# Create first network with Keras from keras.models import Sequential from keras.layers import Dense import numpy as np # fix random seed for reproducibility seed = 7 X = np.random.rand(600,8) Y = np.zeros(600) select = np.random.randint(0,600,100) Y[select]=1 model = Sequential() model.add(Dense(12, input_dim=8, init='uniform', activation='relu')) model.add(Dense(8, init='uniform', activation='relu')) model.add(Dense(1, init='uniform', activation='sigmoid')) # Compile model model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # Fit the model model.fit(X, Y, nb_epoch=5, batch_size=10, verbose=2)