# -*- coding: utf-8 -*- """Xception V1 model for Keras. On ImageNet, this model gets to a top-1 validation accuracy of 0.790 and a top-5 validation accuracy of 0.945. Do note that the input image format for this model is different than for the VGG16 and ResNet models (299x299 instead of 224x224), and that the input preprocessing function is also different (same as Inception V3). Also do note that this model is only available for the TensorFlow backend, due to its reliance on `SeparableConvolution` layers. # Reference - [Xception: Deep Learning with Depthwise Separable Convolutions](https://arxiv.org/abs/1610.02357) """ from __future__ import print_function from __future__ import absolute_import import warnings from ..models import Model from ..layers import Dense, Input, BatchNormalization, Activation, merge from ..layers import Conv2D, SeparableConv2D, MaxPooling2D, GlobalAveragePooling2D from ..engine.topology import get_source_inputs from ..utils.data_utils import get_file from .. import backend as K from .imagenet_utils import decode_predictions, _obtain_input_shape TF_WEIGHTS_PATH = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.4/xception_weights_tf_dim_ordering_tf_kernels.h5' TF_WEIGHTS_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.4/xception_weights_tf_dim_ordering_tf_kernels_notop.h5' def Xception(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, classes=1000): """Instantiate the Xception architecture, optionally loading weights pre-trained on ImageNet. This model is available for TensorFlow only, and can only be used with inputs following the TensorFlow dimension ordering `(width, height, channels)`. You should set `image_dim_ordering="tf"` in your Keras config located at ~/.keras/keras.json. Note that the default input image size for this model is 299x299. # Arguments include_top: whether to include the fully-connected layer at the top of the network. weights: one of `None` (random initialization) or "imagenet" (pre-training on ImageNet). input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(299, 299, 3)`. It should have exactly 3 inputs channels, and width and height should be no smaller than 71. E.g. `(150, 150, 3)` would be one valid value. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. # Returns A Keras model instance. """ if weights not in {'imagenet', None}: raise ValueError('The `weights` argument should be either ' '`None` (random initialization) or `imagenet` ' '(pre-training on ImageNet).') if weights == 'imagenet' and include_top and classes != 1000: raise ValueError('If using `weights` as imagenet with `include_top`' ' as true, `classes` should be 1000') if K.backend() != 'tensorflow': raise RuntimeError('The Xception model is only available with ' 'the TensorFlow backend.') if K.image_dim_ordering() != 'tf': warnings.warn('The Xception model is only available for the ' 'input dimension ordering "tf" ' '(width, height, channels). ' 'However your settings specify the default ' 'dimension ordering "th" (channels, width, height). ' 'You should set `image_dim_ordering="tf"` in your Keras ' 'config located at ~/.keras/keras.json. ' 'The model being returned right now will expect inputs ' 'to follow the "tf" dimension ordering.') K.set_image_dim_ordering('tf') old_dim_ordering = 'th' else: old_dim_ordering = None # Determine proper input shape input_shape = _obtain_input_shape(input_shape, default_size=299, min_size=71, dim_ordering=K.image_dim_ordering(), include_top=include_top) if input_tensor is None: img_input = Input(shape=input_shape) else: if not K.is_keras_tensor(input_tensor): img_input = Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor x = Conv2D(32, 3, 3, subsample=(2, 2), bias=False, name='block1_conv1')(img_input) x = BatchNormalization(name='block1_conv1_bn')(x) x = Activation('relu', name='block1_conv1_act')(x) x = Conv2D(64, 3, 3, bias=False, name='block1_conv2')(x) x = BatchNormalization(name='block1_conv2_bn')(x) x = Activation('relu', name='block1_conv2_act')(x) residual = Conv2D(128, 1, 1, subsample=(2, 2), border_mode='same', bias=False)(x) residual = BatchNormalization()(residual) x = SeparableConv2D(128, 3, 3, border_mode='same', bias=False, name='block2_sepconv1')(x) x = BatchNormalization(name='block2_sepconv1_bn')(x) x = Activation('relu', name='block2_sepconv2_act')(x) x = SeparableConv2D(128, 3, 3, border_mode='same', bias=False, name='block2_sepconv2')(x) x = BatchNormalization(name='block2_sepconv2_bn')(x) x = MaxPooling2D((3, 3), strides=(2, 2), border_mode='same', name='block2_pool')(x) x = merge([x, residual], mode='sum') residual = Conv2D(256, 1, 1, subsample=(2, 2), border_mode='same', bias=False)(x) residual = BatchNormalization()(residual) x = Activation('relu', name='block3_sepconv1_act')(x) x = SeparableConv2D(256, 3, 3, border_mode='same', bias=False, name='block3_sepconv1')(x) x = BatchNormalization(name='block3_sepconv1_bn')(x) x = Activation('relu', name='block3_sepconv2_act')(x) x = SeparableConv2D(256, 3, 3, border_mode='same', bias=False, name='block3_sepconv2')(x) x = BatchNormalization(name='block3_sepconv2_bn')(x) x = MaxPooling2D((3, 3), strides=(2, 2), border_mode='same', name='block3_pool')(x) x = merge([x, residual], mode='sum') residual = Conv2D(728, 1, 1, subsample=(2, 2), border_mode='same', bias=False)(x) residual = BatchNormalization()(residual) x = Activation('relu', name='block4_sepconv1_act')(x) x = SeparableConv2D(728, 3, 3, border_mode='same', bias=False, name='block4_sepconv1')(x) x = BatchNormalization(name='block4_sepconv1_bn')(x) x = Activation('relu', name='block4_sepconv2_act')(x) x = SeparableConv2D(728, 3, 3, border_mode='same', bias=False, name='block4_sepconv2')(x) x = BatchNormalization(name='block4_sepconv2_bn')(x) x = MaxPooling2D((3, 3), strides=(2, 2), border_mode='same', name='block4_pool')(x) x = merge([x, residual], mode='sum') for i in range(8): residual = x prefix = 'block' + str(i + 5) x = Activation('relu', name=prefix + '_sepconv1_act')(x) x = SeparableConv2D(728, 3, 3, border_mode='same', bias=False, name=prefix + '_sepconv1')(x) x = BatchNormalization(name=prefix + '_sepconv1_bn')(x) x = Activation('relu', name=prefix + '_sepconv2_act')(x) x = SeparableConv2D(728, 3, 3, border_mode='same', bias=False, name=prefix + '_sepconv2')(x) x = BatchNormalization(name=prefix + '_sepconv2_bn')(x) x = Activation('relu', name=prefix + '_sepconv3_act')(x) x = SeparableConv2D(728, 3, 3, border_mode='same', bias=False, name=prefix + '_sepconv3')(x) x = BatchNormalization(name=prefix + '_sepconv3_bn')(x) x = merge([x, residual], mode='sum') residual = Conv2D(1024, 1, 1, subsample=(2, 2), border_mode='same', bias=False)(x) residual = BatchNormalization()(residual) x = Activation('relu', name='block13_sepconv1_act')(x) x = SeparableConv2D(728, 3, 3, border_mode='same', bias=False, name='block13_sepconv1')(x) x = BatchNormalization(name='block13_sepconv1_bn')(x) x = Activation('relu', name='block13_sepconv2_act')(x) x = SeparableConv2D(1024, 3, 3, border_mode='same', bias=False, name='block13_sepconv2')(x) x = BatchNormalization(name='block13_sepconv2_bn')(x) x = MaxPooling2D((3, 3), strides=(2, 2), border_mode='same', name='block13_pool')(x) x = merge([x, residual], mode='sum') x = SeparableConv2D(1536, 3, 3, border_mode='same', bias=False, name='block14_sepconv1')(x) x = BatchNormalization(name='block14_sepconv1_bn')(x) x = Activation('relu', name='block14_sepconv1_act')(x) x = SeparableConv2D(2048, 3, 3, border_mode='same', bias=False, name='block14_sepconv2')(x) x = BatchNormalization(name='block14_sepconv2_bn')(x) x = Activation('relu', name='block14_sepconv2_act')(x) if include_top: x = GlobalAveragePooling2D(name='avg_pool')(x) x = Dense(classes, activation='softmax', name='predictions')(x) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = get_source_inputs(input_tensor) else: inputs = img_input # Create model. model = Model(inputs, x, name='xception') # load weights if weights == 'imagenet': if include_top: weights_path = get_file('xception_weights_tf_dim_ordering_tf_kernels.h5', TF_WEIGHTS_PATH, cache_subdir='models') else: weights_path = get_file('xception_weights_tf_dim_ordering_tf_kernels_notop.h5', TF_WEIGHTS_PATH_NO_TOP, cache_subdir='models') model.load_weights(weights_path) if old_dim_ordering: K.set_image_dim_ordering(old_dim_ordering) return model def preprocess_input(x): x /= 255. x -= 0.5 x *= 2. return x