"""Fairly basic set of tools for real-time data augmentation on image data. Can easily be extended to include new transformations, new preprocessing methods, etc... """ from __future__ import absolute_import from __future__ import print_function import numpy as np import re from scipy import linalg import scipy.ndimage as ndi from six.moves import range import os import threading import warnings from .. import backend as K try: from PIL import Image as pil_image except ImportError: pil_image = None def random_rotation(x, rg, row_axis=1, col_axis=2, channel_axis=0, fill_mode='nearest', cval=0.): """Performs a random rotation of a Numpy image tensor. # Arguments x: Input tensor. Must be 3D. rg: Rotation range, in degrees. row_axis: Index of axis for rows in the input tensor. col_axis: Index of axis for columns in the input tensor. channel_axis: Index of axis for channels in the input tensor. fill_mode: Points outside the boundaries of the input are filled according to the given mode (one of `{'constant', 'nearest', 'reflect', 'wrap'}`). cval: Value used for points outside the boundaries of the input if `mode='constant'`. # Returns Rotated Numpy image tensor. """ theta = np.pi / 180 * np.random.uniform(-rg, rg) rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1]]) h, w = x.shape[row_axis], x.shape[col_axis] transform_matrix = transform_matrix_offset_center(rotation_matrix, h, w) x = apply_transform(x, transform_matrix, channel_axis, fill_mode, cval) return x def random_shift(x, wrg, hrg, row_axis=1, col_axis=2, channel_axis=0, fill_mode='nearest', cval=0.): """Performs a random spatial shift of a Numpy image tensor. # Arguments x: Input tensor. Must be 3D. wrg: Width shift range, as a float fraction of the width. hrg: Height shift range, as a float fraction of the height. row_axis: Index of axis for rows in the input tensor. col_axis: Index of axis for columns in the input tensor. channel_axis: Index of axis for channels in the input tensor. fill_mode: Points outside the boundaries of the input are filled according to the given mode (one of `{'constant', 'nearest', 'reflect', 'wrap'}`). cval: Value used for points outside the boundaries of the input if `mode='constant'`. # Returns Shifted Numpy image tensor. """ h, w = x.shape[row_axis], x.shape[col_axis] tx = np.random.uniform(-hrg, hrg) * h ty = np.random.uniform(-wrg, wrg) * w translation_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]]) transform_matrix = translation_matrix # no need to do offset x = apply_transform(x, transform_matrix, channel_axis, fill_mode, cval) return x def random_shear(x, intensity, row_axis=1, col_axis=2, channel_axis=0, fill_mode='nearest', cval=0.): """Performs a random spatial shear of a Numpy image tensor. # Arguments x: Input tensor. Must be 3D. intensity: Transformation intensity. row_axis: Index of axis for rows in the input tensor. col_axis: Index of axis for columns in the input tensor. channel_axis: Index of axis for channels in the input tensor. fill_mode: Points outside the boundaries of the input are filled according to the given mode (one of `{'constant', 'nearest', 'reflect', 'wrap'}`). cval: Value used for points outside the boundaries of the input if `mode='constant'`. # Returns Sheared Numpy image tensor. """ shear = np.random.uniform(-intensity, intensity) shear_matrix = np.array([[1, -np.sin(shear), 0], [0, np.cos(shear), 0], [0, 0, 1]]) h, w = x.shape[row_axis], x.shape[col_axis] transform_matrix = transform_matrix_offset_center(shear_matrix, h, w) x = apply_transform(x, transform_matrix, channel_axis, fill_mode, cval) return x def random_zoom(x, zoom_range, row_axis=1, col_axis=2, channel_axis=0, fill_mode='nearest', cval=0.): """Performs a random spatial zoom of a Numpy image tensor. # Arguments x: Input tensor. Must be 3D. zoom_range: Tuple of floats; zoom range for width and height. row_axis: Index of axis for rows in the input tensor. col_axis: Index of axis for columns in the input tensor. channel_axis: Index of axis for channels in the input tensor. fill_mode: Points outside the boundaries of the input are filled according to the given mode (one of `{'constant', 'nearest', 'reflect', 'wrap'}`). cval: Value used for points outside the boundaries of the input if `mode='constant'`. # Returns Zoomed Numpy image tensor. # Raises ValueError: if `zoom_range` isn't a tuple. """ if len(zoom_range) != 2: raise ValueError('zoom_range should be a tuple or list of two floats. ' 'Received arg: ', zoom_range) if zoom_range[0] == 1 and zoom_range[1] == 1: zx, zy = 1, 1 else: zx, zy = np.random.uniform(zoom_range[0], zoom_range[1], 2) zoom_matrix = np.array([[zx, 0, 0], [0, zy, 0], [0, 0, 1]]) h, w = x.shape[row_axis], x.shape[col_axis] transform_matrix = transform_matrix_offset_center(zoom_matrix, h, w) x = apply_transform(x, transform_matrix, channel_axis, fill_mode, cval) return x def random_channel_shift(x, intensity, channel_axis=0): x = np.rollaxis(x, channel_axis, 0) min_x, max_x = np.min(x), np.max(x) channel_images = [np.clip(x_channel + np.random.uniform(-intensity, intensity), min_x, max_x) for x_channel in x] x = np.stack(channel_images, axis=0) x = np.rollaxis(x, 0, channel_axis + 1) return x def transform_matrix_offset_center(matrix, x, y): o_x = float(x) / 2 + 0.5 o_y = float(y) / 2 + 0.5 offset_matrix = np.array([[1, 0, o_x], [0, 1, o_y], [0, 0, 1]]) reset_matrix = np.array([[1, 0, -o_x], [0, 1, -o_y], [0, 0, 1]]) transform_matrix = np.dot(np.dot(offset_matrix, matrix), reset_matrix) return transform_matrix def apply_transform(x, transform_matrix, channel_axis=0, fill_mode='nearest', cval=0.): x = np.rollaxis(x, channel_axis, 0) final_affine_matrix = transform_matrix[:2, :2] final_offset = transform_matrix[:2, 2] channel_images = [ndi.interpolation.affine_transform(x_channel, final_affine_matrix, final_offset, order=0, mode=fill_mode, cval=cval) for x_channel in x] x = np.stack(channel_images, axis=0) x = np.rollaxis(x, 0, channel_axis + 1) return x def flip_axis(x, axis): x = np.asarray(x).swapaxes(axis, 0) x = x[::-1, ...] x = x.swapaxes(0, axis) return x def array_to_img(x, dim_ordering='default', scale=True): """Converts a 3D Numpy array to a PIL Image instance. # Arguments x: Input Numpy array. dim_ordering: Image data format. scale: Whether to rescale image values to be within [0, 255]. # Returns A PIL Image instance. # Raises ImportError: if PIL is not available. ValueError: if invalid `x` or `dim_ordering` is passed. """ if pil_image is None: raise ImportError('Could not import PIL.Image. ' 'The use of `array_to_img` requires PIL.') x = np.asarray(x, dtype=K.floatx()) if x.ndim != 3: raise ValueError('Expected image array to have rank 3 (single image). ' 'Got array with shape:', x.shape) if dim_ordering == 'default': dim_ordering = K.image_dim_ordering() if dim_ordering not in {'th', 'tf'}: raise ValueError('Invalid dim_ordering:', dim_ordering) # Original Numpy array x has format (height, width, channel) # or (channel, height, width) # but target PIL image has format (width, height, channel) if dim_ordering == 'th': x = x.transpose(1, 2, 0) if scale: x = x + max(-np.min(x), 0) x_max = np.max(x) if x_max != 0: x /= x_max x *= 255 if x.shape[2] == 3: # RGB return pil_image.fromarray(x.astype('uint8'), 'RGB') elif x.shape[2] == 1: # grayscale return pil_image.fromarray(x[:, :, 0].astype('uint8'), 'L') else: raise ValueError('Unsupported channel number: ', x.shape[2]) def img_to_array(img, dim_ordering='default'): """Converts a PIL Image instance to a Numpy array. # Arguments img: PIL Image instance. dim_ordering: Image data format. # Returns A 3D Numpy array. # Raises ValueError: if invalid `img` or `dim_ordering` is passed. """ if dim_ordering == 'default': dim_ordering = K.image_dim_ordering() if dim_ordering not in {'th', 'tf'}: raise ValueError('Unknown dim_ordering: ', dim_ordering) # Numpy array x has format (height, width, channel) # or (channel, height, width) # but original PIL image has format (width, height, channel) x = np.asarray(img, dtype=K.floatx()) if len(x.shape) == 3: if dim_ordering == 'th': x = x.transpose(2, 0, 1) elif len(x.shape) == 2: if dim_ordering == 'th': x = x.reshape((1, x.shape[0], x.shape[1])) else: x = x.reshape((x.shape[0], x.shape[1], 1)) else: raise ValueError('Unsupported image shape: ', x.shape) return x def load_img(path, grayscale=False, target_size=None): """Loads an image into PIL format. # Arguments path: Path to image file grayscale: Boolean, whether to load the image as grayscale. target_size: Either `None` (default to original size) or tuple of ints `(img_height, img_width)`. # Returns A PIL Image instance. # Raises ImportError: if PIL is not available. """ if pil_image is None: raise ImportError('Could not import PIL.Image. ' 'The use of `array_to_img` requires PIL.') img = pil_image.open(path) if grayscale: img = img.convert('L') else: # Ensure 3 channel even when loaded image is grayscale img = img.convert('RGB') if target_size: img = img.resize((target_size[1], target_size[0])) return img def list_pictures(directory, ext='jpg|jpeg|bmp|png'): return [os.path.join(root, f) for root, _, files in os.walk(directory) for f in files if re.match('([\w]+\.(?:' + ext + '))', f)] class ImageDataGenerator(object): """Generate minibatches of image data with real-time data augmentation. # Arguments featurewise_center: set input mean to 0 over the dataset. samplewise_center: set each sample mean to 0. featurewise_std_normalization: divide inputs by std of the dataset. samplewise_std_normalization: divide each input by its std. zca_whitening: apply ZCA whitening. rotation_range: degrees (0 to 180). width_shift_range: fraction of total width. height_shift_range: fraction of total height. shear_range: shear intensity (shear angle in radians). zoom_range: amount of zoom. if scalar z, zoom will be randomly picked in the range [1-z, 1+z]. A sequence of two can be passed instead to select this range. channel_shift_range: shift range for each channels. fill_mode: points outside the boundaries are filled according to the given mode ('constant', 'nearest', 'reflect' or 'wrap'). Default is 'nearest'. cval: value used for points outside the boundaries when fill_mode is 'constant'. Default is 0. horizontal_flip: whether to randomly flip images horizontally. vertical_flip: whether to randomly flip images vertically. rescale: rescaling factor. If None or 0, no rescaling is applied, otherwise we multiply the data by the value provided (before applying any other transformation). preprocessing_function: function that will be implied on each input. The function will run before any other modification on it. The function should take one argument: one image (Numpy tensor with rank 3), and should output a Numpy tensor with the same shape. dim_ordering: 'th' or 'tf'. In 'th' mode, the channels dimension (the depth) is at index 1, in 'tf' mode it is at index 3. It defaults to the `image_dim_ordering` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be "tf". """ def __init__(self, featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=0., width_shift_range=0., height_shift_range=0., shear_range=0., zoom_range=0., channel_shift_range=0., fill_mode='nearest', cval=0., horizontal_flip=False, vertical_flip=False, rescale=None, preprocessing_function=None, dim_ordering='default'): if dim_ordering == 'default': dim_ordering = K.image_dim_ordering() self.featurewise_center = featurewise_center self.samplewise_center = samplewise_center self.featurewise_std_normalization = featurewise_std_normalization self.samplewise_std_normalization = samplewise_std_normalization self.zca_whitening = zca_whitening self.rotation_range = rotation_range self.width_shift_range = width_shift_range self.height_shift_range = height_shift_range self.shear_range = shear_range self.zoom_range = zoom_range self.channel_shift_range = channel_shift_range self.fill_mode = fill_mode self.cval = cval self.horizontal_flip = horizontal_flip self.vertical_flip = vertical_flip self.rescale = rescale self.preprocessing_function = preprocessing_function if dim_ordering not in {'tf', 'th'}: raise ValueError('dim_ordering should be "tf" (channel after row and ' 'column) or "th" (channel before row and column). ' 'Received arg: ', dim_ordering) self.dim_ordering = dim_ordering if dim_ordering == 'th': self.channel_axis = 1 self.row_axis = 2 self.col_axis = 3 if dim_ordering == 'tf': self.channel_axis = 3 self.row_axis = 1 self.col_axis = 2 self.mean = None self.std = None self.principal_components = None if np.isscalar(zoom_range): self.zoom_range = [1 - zoom_range, 1 + zoom_range] elif len(zoom_range) == 2: self.zoom_range = [zoom_range[0], zoom_range[1]] else: raise ValueError('zoom_range should be a float or ' 'a tuple or list of two floats. ' 'Received arg: ', zoom_range) def flow(self, X, y=None, batch_size=32, shuffle=True, seed=None, save_to_dir=None, save_prefix='', save_format='jpeg'): return NumpyArrayIterator( X, y, self, batch_size=batch_size, shuffle=shuffle, seed=seed, dim_ordering=self.dim_ordering, save_to_dir=save_to_dir, save_prefix=save_prefix, save_format=save_format) def flow_from_directory(self, directory, target_size=(256, 256), color_mode='rgb', classes=None, class_mode='categorical', batch_size=32, shuffle=True, seed=None, save_to_dir=None, save_prefix='', save_format='jpeg', follow_links=False): return DirectoryIterator( directory, self, target_size=target_size, color_mode=color_mode, classes=classes, class_mode=class_mode, dim_ordering=self.dim_ordering, batch_size=batch_size, shuffle=shuffle, seed=seed, save_to_dir=save_to_dir, save_prefix=save_prefix, save_format=save_format, follow_links=follow_links) def standardize(self, x): if self.preprocessing_function: x = self.preprocessing_function(x) if self.rescale: x *= self.rescale # x is a single image, so it doesn't have image number at index 0 img_channel_axis = self.channel_axis - 1 if self.samplewise_center: x -= np.mean(x, axis=img_channel_axis, keepdims=True) if self.samplewise_std_normalization: x /= (np.std(x, axis=img_channel_axis, keepdims=True) + 1e-7) if self.featurewise_center: if self.mean is not None: x -= self.mean else: warnings.warn('This ImageDataGenerator specifies ' '`featurewise_center`, but it hasn\'t' 'been fit on any training data. Fit it ' 'first by calling `.fit(numpy_data)`.') if self.featurewise_std_normalization: if self.std is not None: x /= (self.std + 1e-7) else: warnings.warn('This ImageDataGenerator specifies ' '`featurewise_std_normalization`, but it hasn\'t' 'been fit on any training data. Fit it ' 'first by calling `.fit(numpy_data)`.') if self.zca_whitening: if self.principal_components is not None: flatx = np.reshape(x, (x.size)) whitex = np.dot(flatx, self.principal_components) x = np.reshape(whitex, (x.shape[0], x.shape[1], x.shape[2])) else: warnings.warn('This ImageDataGenerator specifies ' '`zca_whitening`, but it hasn\'t' 'been fit on any training data. Fit it ' 'first by calling `.fit(numpy_data)`.') return x def random_transform(self, x): # x is a single image, so it doesn't have image number at index 0 img_row_axis = self.row_axis - 1 img_col_axis = self.col_axis - 1 img_channel_axis = self.channel_axis - 1 # use composition of homographies # to generate final transform that needs to be applied if self.rotation_range: theta = np.pi / 180 * np.random.uniform(-self.rotation_range, self.rotation_range) else: theta = 0 rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1]]) if self.height_shift_range: tx = np.random.uniform(-self.height_shift_range, self.height_shift_range) * x.shape[img_row_axis] else: tx = 0 if self.width_shift_range: ty = np.random.uniform(-self.width_shift_range, self.width_shift_range) * x.shape[img_col_axis] else: ty = 0 translation_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]]) if self.shear_range: shear = np.random.uniform(-self.shear_range, self.shear_range) else: shear = 0 shear_matrix = np.array([[1, -np.sin(shear), 0], [0, np.cos(shear), 0], [0, 0, 1]]) if self.zoom_range[0] == 1 and self.zoom_range[1] == 1: zx, zy = 1, 1 else: zx, zy = np.random.uniform(self.zoom_range[0], self.zoom_range[1], 2) zoom_matrix = np.array([[zx, 0, 0], [0, zy, 0], [0, 0, 1]]) transform_matrix = np.dot(np.dot(np.dot(rotation_matrix, translation_matrix), shear_matrix), zoom_matrix) h, w = x.shape[img_row_axis], x.shape[img_col_axis] transform_matrix = transform_matrix_offset_center(transform_matrix, h, w) x = apply_transform(x, transform_matrix, img_channel_axis, fill_mode=self.fill_mode, cval=self.cval) if self.channel_shift_range != 0: x = random_channel_shift(x, self.channel_shift_range, img_channel_axis) if self.horizontal_flip: if np.random.random() < 0.5: x = flip_axis(x, img_col_axis) if self.vertical_flip: if np.random.random() < 0.5: x = flip_axis(x, img_row_axis) return x def fit(self, x, augment=False, rounds=1, seed=None): """Required for featurewise_center, featurewise_std_normalization and zca_whitening. # Arguments x: Numpy array, the data to fit on. Should have rank 4. In case of grayscale data, the channels axis should have value 1, and in case of RGB data, it should have value 3. augment: Whether to fit on randomly augmented samples rounds: If `augment`, how many augmentation passes to do over the data seed: random seed. # Raises ValueError: in case of invalid input `x`. """ x = np.asarray(x, dtype=K.floatx()) if x.ndim != 4: raise ValueError('Input to `.fit()` should have rank 4. ' 'Got array with shape: ' + str(x.shape)) if x.shape[self.channel_axis] not in {1, 3, 4}: raise ValueError( 'Expected input to be images (as Numpy array) ' 'following the dimension ordering convention "' + self.dim_ordering + '" ' '(channels on axis ' + str(self.channel_axis) + '), i.e. expected ' 'either 1, 3 or 4 channels on axis ' + str(self.channel_axis) + '. ' 'However, it was passed an array with shape ' + str(x.shape) + ' (' + str(x.shape[self.channel_axis]) + ' channels).') if seed is not None: np.random.seed(seed) x = np.copy(x) if augment: ax = np.zeros(tuple([rounds * x.shape[0]] + list(x.shape)[1:]), dtype=K.floatx()) for r in range(rounds): for i in range(x.shape[0]): ax[i + r * x.shape[0]] = self.random_transform(x[i]) x = ax if self.featurewise_center: self.mean = np.mean(x, axis=(0, self.row_axis, self.col_axis)) broadcast_shape = [1, 1, 1] broadcast_shape[self.channel_axis - 1] = x.shape[self.channel_axis] self.mean = np.reshape(self.mean, broadcast_shape) x -= self.mean if self.featurewise_std_normalization: self.std = np.std(x, axis=(0, self.row_axis, self.col_axis)) broadcast_shape = [1, 1, 1] broadcast_shape[self.channel_axis - 1] = x.shape[self.channel_axis] self.std = np.reshape(self.std, broadcast_shape) x /= (self.std + K.epsilon()) if self.zca_whitening: flat_x = np.reshape(x, (x.shape[0], x.shape[1] * x.shape[2] * x.shape[3])) sigma = np.dot(flat_x.T, flat_x) / flat_x.shape[0] u, s, _ = linalg.svd(sigma) self.principal_components = np.dot(np.dot(u, np.diag(1. / np.sqrt(s + 10e-7))), u.T) class Iterator(object): def __init__(self, n, batch_size, shuffle, seed): self.n = n self.batch_size = batch_size self.shuffle = shuffle self.batch_index = 0 self.total_batches_seen = 0 self.lock = threading.Lock() self.index_generator = self._flow_index(n, batch_size, shuffle, seed) def reset(self): self.batch_index = 0 def _flow_index(self, n, batch_size=32, shuffle=False, seed=None): # ensure self.batch_index is 0 self.reset() while 1: if seed is not None: np.random.seed(seed + self.total_batches_seen) if self.batch_index == 0: index_array = np.arange(n) if shuffle: index_array = np.random.permutation(n) current_index = (self.batch_index * batch_size) % n if n >= current_index + batch_size: current_batch_size = batch_size self.batch_index += 1 else: current_batch_size = n - current_index self.batch_index = 0 self.total_batches_seen += 1 yield (index_array[current_index: current_index + current_batch_size], current_index, current_batch_size) def __iter__(self): # needed if we want to do something like: # for x, y in data_gen.flow(...): return self def __next__(self, *args, **kwargs): return self.next(*args, **kwargs) class NumpyArrayIterator(Iterator): def __init__(self, x, y, image_data_generator, batch_size=32, shuffle=False, seed=None, dim_ordering='default', save_to_dir=None, save_prefix='', save_format='jpeg'): if y is not None and len(x) != len(y): raise ValueError('X (images tensor) and y (labels) ' 'should have the same length. ' 'Found: X.shape = %s, y.shape = %s' % (np.asarray(x).shape, np.asarray(y).shape)) if dim_ordering == 'default': dim_ordering = K.image_dim_ordering() self.x = np.asarray(x, dtype=K.floatx()) if self.x.ndim != 4: raise ValueError('Input data in `NumpyArrayIterator` ' 'should have rank 4. You passed an array ' 'with shape', self.x.shape) channels_axis = 3 if dim_ordering == 'tf' else 1 if self.x.shape[channels_axis] not in {1, 3, 4}: raise ValueError('NumpyArrayIterator is set to use the ' 'dimension ordering convention "' + dim_ordering + '" ' '(channels on axis ' + str(channels_axis) + '), i.e. expected ' 'either 1, 3 or 4 channels on axis ' + str(channels_axis) + '. ' 'However, it was passed an array with shape ' + str(self.x.shape) + ' (' + str(self.x.shape[channels_axis]) + ' channels).') if y is not None: self.y = np.asarray(y) else: self.y = None self.image_data_generator = image_data_generator self.dim_ordering = dim_ordering self.save_to_dir = save_to_dir self.save_prefix = save_prefix self.save_format = save_format super(NumpyArrayIterator, self).__init__(x.shape[0], batch_size, shuffle, seed) def next(self): # for python 2.x. # Keeps under lock only the mechanism which advances # the indexing of each batch # see http://anandology.com/blog/using-iterators-and-generators/ with self.lock: index_array, current_index, current_batch_size = next(self.index_generator) # The transformation of images is not under thread lock # so it can be done in parallel batch_x = np.zeros(tuple([current_batch_size] + list(self.x.shape)[1:]), dtype=K.floatx()) for i, j in enumerate(index_array): x = self.x[j] x = self.image_data_generator.random_transform(x.astype(K.floatx())) x = self.image_data_generator.standardize(x) batch_x[i] = x if self.save_to_dir: for i in range(current_batch_size): img = array_to_img(batch_x[i], self.dim_ordering, scale=True) fname = '{prefix}_{index}_{hash}.{format}'.format(prefix=self.save_prefix, index=current_index + i, hash=np.random.randint(1e4), format=self.save_format) img.save(os.path.join(self.save_to_dir, fname)) if self.y is None: return batch_x batch_y = self.y[index_array] return batch_x, batch_y class DirectoryIterator(Iterator): def __init__(self, directory, image_data_generator, target_size=(256, 256), color_mode='rgb', dim_ordering='default', classes=None, class_mode='categorical', batch_size=32, shuffle=True, seed=None, save_to_dir=None, save_prefix='', save_format='jpeg', follow_links=False): if dim_ordering == 'default': dim_ordering = K.image_dim_ordering() self.directory = directory self.image_data_generator = image_data_generator self.target_size = tuple(target_size) if color_mode not in {'rgb', 'grayscale'}: raise ValueError('Invalid color mode:', color_mode, '; expected "rgb" or "grayscale".') self.color_mode = color_mode self.dim_ordering = dim_ordering if self.color_mode == 'rgb': if self.dim_ordering == 'tf': self.image_shape = self.target_size + (3,) else: self.image_shape = (3,) + self.target_size else: if self.dim_ordering == 'tf': self.image_shape = self.target_size + (1,) else: self.image_shape = (1,) + self.target_size self.classes = classes if class_mode not in {'categorical', 'binary', 'sparse', None}: raise ValueError('Invalid class_mode:', class_mode, '; expected one of "categorical", ' '"binary", "sparse", or None.') self.class_mode = class_mode self.save_to_dir = save_to_dir self.save_prefix = save_prefix self.save_format = save_format white_list_formats = {'png', 'jpg', 'jpeg', 'bmp'} # first, count the number of samples and classes self.nb_sample = 0 if not classes: classes = [] for subdir in sorted(os.listdir(directory)): if os.path.isdir(os.path.join(directory, subdir)): classes.append(subdir) self.nb_class = len(classes) self.class_indices = dict(zip(classes, range(len(classes)))) def _recursive_list(subpath): return sorted(os.walk(subpath, followlinks=follow_links), key=lambda tpl: tpl[0]) for subdir in classes: subpath = os.path.join(directory, subdir) for root, _, files in _recursive_list(subpath): for fname in files: is_valid = False for extension in white_list_formats: if fname.lower().endswith('.' + extension): is_valid = True break if is_valid: self.nb_sample += 1 print('Found %d images belonging to %d classes.' % (self.nb_sample, self.nb_class)) # second, build an index of the images in the different class subfolders self.filenames = [] self.classes = np.zeros((self.nb_sample,), dtype='int32') i = 0 for subdir in classes: subpath = os.path.join(directory, subdir) for root, _, files in _recursive_list(subpath): for fname in files: is_valid = False for extension in white_list_formats: if fname.lower().endswith('.' + extension): is_valid = True break if is_valid: self.classes[i] = self.class_indices[subdir] i += 1 # add filename relative to directory absolute_path = os.path.join(root, fname) self.filenames.append(os.path.relpath(absolute_path, directory)) super(DirectoryIterator, self).__init__(self.nb_sample, batch_size, shuffle, seed) def next(self): with self.lock: index_array, current_index, current_batch_size = next(self.index_generator) # The transformation of images is not under thread lock # so it can be done in parallel batch_x = np.zeros((current_batch_size,) + self.image_shape, dtype=K.floatx()) grayscale = self.color_mode == 'grayscale' # build batch of image data for i, j in enumerate(index_array): fname = self.filenames[j] img = load_img(os.path.join(self.directory, fname), grayscale=grayscale, target_size=self.target_size) x = img_to_array(img, dim_ordering=self.dim_ordering) x = self.image_data_generator.random_transform(x) x = self.image_data_generator.standardize(x) batch_x[i] = x # optionally save augmented images to disk for debugging purposes if self.save_to_dir: for i in range(current_batch_size): img = array_to_img(batch_x[i], self.dim_ordering, scale=True) fname = '{prefix}_{index}_{hash}.{format}'.format(prefix=self.save_prefix, index=current_index + i, hash=np.random.randint(1e4), format=self.save_format) img.save(os.path.join(self.save_to_dir, fname)) # build batch of labels if self.class_mode == 'sparse': batch_y = self.classes[index_array] elif self.class_mode == 'binary': batch_y = self.classes[index_array].astype(K.floatx()) elif self.class_mode == 'categorical': batch_y = np.zeros((len(batch_x), self.nb_class), dtype=K.floatx()) for i, label in enumerate(self.classes[index_array]): batch_y[i, label] = 1. else: return batch_x return batch_x, batch_y