HHsuite for sensitive protein sequence
searching based on HMM-HMM alignment

User Guide

Version 3.0.0, March 2015

(©Johannes Soding, Markus Meier, Martin Steinegger, Michael Remmert, Andreas Hauser,
Christof Angermiiller, Armin Meier and Andreas Biegert

Summary

The HHsuite is an open-source software package for sensitive protein sequence searching based on
the pairwise alignment of hidden Markov models (HMMs). It contains HHsearch [1] and HHblits [2]
among other programs and utilities. HHsearch takes as input a multiple sequence alignment (MSA)
or profile HMM and searches a database of HMMs (e.g. PDB, Pfam, or InterPro) for homologous
proteins. HHsearch is often used for protein structure prediction to detect homologous templates
and to build highly accurate query-template pairwise alignments for homology modeling. In the
CASP9 competition (2010), a fully automated version of HHpred based on HHsearch and HHblits
was ranked best out of 81 servers in template-based structure prediction. HHblits can build high-
quality MSAs starting from single sequences or from MSAs. It transforms these into a query HMM
and iteratively searches through uniprot20 database by adding significantly similar sequences from
the previous search to the updated query HMM for the next search iteration. Compared to PSI-
BLAST, HHblits is faster, up to twice as sensitive and produces more accurate alignments. HHblits
uses the same HMM-HMM alignment algorithms as HHsearch, but it employs a fast prefilter that
reduces the number of database HMMs for which to perform the slow HMM-HMM comparison
from tens of millions to a few thousands.

References:

[1] Séding J. (2005)
Protein homology detection by HMM-HMM comparison.
Bioinformatics 21, 951-960.

[2] Remmert M., Biegert A., Hauser A., and Séding J. (2011)
HHblits: Lightning-fast iterative protein sequence searching by HMM-HMM alignment.
Nat. Methods 9, 173-175.

Contents

Introduction

Installation of the HHsuite and its databases

2.1 Supported platforms and hardware requirements
2.2 Installation from source code
2.3 Package installation L L
2.4 HHsuite databases e
2.5 Running HHblits efficiently on a computer cluster.

Brief tutorial to HHsuite tools

3.1 Overview of programs L L
3.2 Searching databases of HMMs using HHsearch and HHblits
3.3 Generating a multiple sequence alignment using HHblits
3.4 Visually checking an MSA for corrupted regions
3.5 Building customized databases L Lo oL
3.6 Modifying or extending existing databases

Frequently asked questions

4.1 How do Ireport abug?
4.2 What is HMM-HMM comparison and why is it so powerful?
4.3 When can the HHsuite be useful forme? o 0.
4.4 What does homology mean and why is it important?
4.5 How can I verify if a database match is homologous?
4.6 What does the maximum accuracy alignment algorithm do?
4.7 How is the MSA diversity Neff calculated?
4.8 On how to use HHsuite tools
4.9 About HHsuite databases

HHsearch/HHblits output: hit list and pairwise alignments
5.1 Summary hit listo
5.2 HMM-HMM pairwise alignments 0oL

File formats
6.1 Multiple sequence alignment formats
6.2 HHsearch/HHblits model format (hhm-format)

Summary of command-line parameters
7.1 hhblits - HMM-HMM-based lighting-fast iterative sequence search
7.2 hhsearch — search a database of HMMs with a query MSA or HMM
7.3 hhfilter —filter an MSA
7.4 hhmake — build an HMM from an input alignment
7.5 hhalign — align a query MSA/HMM to a template MSA/HMM
7.6 reformat.pl — reformat one or many alignments
7.7 addss.pl — add predicted secondary structure to an MSA or HMM
7.8 hhmakemodel.pl and hhmakemodel.py — generate MSAs or coarse 3D models from
HHsearch results file
7.9 hhsuitedb.pl — Build an HHsuite database
7.10 multithread.pl — Run a command for many files in parallel using multiple threads
7.11 splitfasta.pl — Split multi-sequence FASTA file into single-sequence files

10
10
10
11
15
16
18

19
19
19
19
20
20
21
22
23
24
25

27
27
29

30
30
33

35
35
38
40
41
42
43
44

44
46
46

7.12 renumberpdb.pl — Renumber indices in PDB file to match input sequence indices
7.13 cif2fasta.py — Create a fasta file from cif files
7.14 pdbfilter.py — Filter sequences from the PDB (requires MMSeqs)

8 Selected changes from previous versions
8.1 Upto3.0.0 (March 2015)
8.2 Upto21.0(March 2013)
8.3 Up to 2.0.16 (January 2013)
8.4 Upto2.0.2 (January 2012)
8.5 1.6.0 (November 2010) e
8.6 1.5.0 (August 2007)

9 License
10 Contributors and Contact
11 Acknowlegements

References

47
47
47

48
48
48
49
49
50
50

52

52

53

53

1 Introduction

The HHsuite is an open-source software package for highly sensitive sequence searching and sequence
alignment. Its two most important programs are HHsearch and HHblits. Both are based on the
pairwise comparison of profile hidden Markov models (HMMs).

Profile HMMs are a concise representation of multiple sequence alignments (MSAs) [1,2]. Like
sequence profiles, they contain for each position in the master sequence the probabilities to observe
each of the 20 amino acids in homologous proteins. The amino acid distributions for each column
are extrapolated from the homologous sequences in the MSA by adding pseudocounts to the amino
acid counts observed in the MSA. Unlike sequence profiles, profile HMMSs also contain position-
specific gap penalties. More precisely, they contain for each position in the master sequence the
probability to observe an insertion or a deletion after that position (the log of which corresponds
to gap-open penalties) and the probabilities to extend the insertion or deletion (the log of which
corresponds to gap-extend penalties). A profile HMM is thus much better suited than a single
sequence to find homologous sequences and calculate accurate alignments. By representing both
the query sequence and the database sequences by profile HMMs, HHsearch and HHblits are more
sensitive for detecting and aligning remotely homologous proteins than methods based on pairwise
sequence comparison or profile-sequence comparison.

HHblits can build high-quality multiple sequence alignments (MSAs) starting from a single se-
quence or from an MSA. Compared to PSI-BLAST [3], HHblits is faster, finds up to two times
more homologous proteins and produces more accurate alignments. It uses an iterative search strat-
egy, adding sequences from significantly similar database HMMs from a previous search iteration
to the query HMM for the next search. Because HHblits is based on the pairwise alignment of
profile HMMs, it needs its own type of databases that contain multiple sequence alignments and
the corresponding profile HMMs instead of single sequences. The HHsuite database uniprot20 is
generated regularly by clustering the UniProt database [4] from EBI/SIB/PIR and the nonredun-
dant (nr) database from the NCBI into groups of similar sequences alignable over at least 80 %
of their length and down to ~ 20% pairwise sequence identity. This database can be downloaded
together with HHblits. HHblits uses the HMM-HMM alignment algorithms in HHsearch, but it
employs a fast prefilter (based partly on code from Michael Farrar, [5]) that reduces the number
of database HMMs for which to perform the slow HMM-HMM comparison from tens of millions
to a few thousands. At the same time, the prefilter is sensitive enough to reduce the sensitivity of
HHblits only marginally in comparison to HHsearch.

By generating highly accurate and diverse MSAs, HHblits can improve almost all downstream
sequence analysis methods, such as the prediction of secondary and tertiary structure [6, 7], of
membrane helices, functionally conserved residues, binding pockets, protein interaction interfaces,
or short linear motifs. The accuracy of all these methods depends critically on the accuracy and
the diversity of the underlying MSAs, as too few or too similar sequences do not add significant
information for the predictions. As an example, running the popular PSIPRED secondary structure
prediction program [6] on MSAs generated by HHblits instead of PSI-BLAST improved the accuracy
of PSIPRED significantly even without retraining PSIPRED on the HHblits alignments [8].

HHsearch takes as input an MSA (e.g. built by HHblits) or a profile HMM and searches a database
of HMMs for homologous proteins. The pdb70 database, for instance, consists of profile HMMs
for a set of representative sequences from the PDB database [9]; the scop70 database has profile
HMMs for representative domain sequences from the SCOP database of structural domains [10]; the
Pfam [11] domain database is a large collection of curated MSAs and profile HMMs for conserved,
functionally annotated domains. HHsearch is often used to predict the domain architectures and
the functions of domains in proteins by finding similarities to domains in the pdb70, Pfam or other
databases.

In addition to the command line package described here, the interactive web server at http:
//hhpred.tuebingen.mpg.de [12,13] run HHsearch and HHblits. It offers extended functionality,

such as Jalview applets for checking query and template alignments, histogram views of alignments,
and building 3D models with MODELLER [14].

In the CASP9 competition (Critical Assessment of Techniques for Protein Structure Prediction) in
2010, a fully automated version of HHpred based on HHsearch and HHblits was ranked best out of
the 81 servers in template-based structure prediction, the category most relevant for biological appli-
cations, while having an average response time of minutes instead of days like most other servers [15]
(http://predictioncenter.org/casp9/groups_analysis.cgi?type=server&tbm=on).

Other popular programs for sensitive, iterative protein sequence searching are PSI-BLAST [3]
and HMMER (http://hmmer.org/). Since they are based on profile-to-sequence and HMM-to-
sequence comparison, respectively, they have the advantage over HHblits and HHsearch of being
able to search raw sequence databases.

2 Installation of the HHsuite and its databases

The HHsuite source code, executable RPM and DPKG packages for most Linux 64 bit platforms,
MAC OS X, and BSD Unix, utility scripts in Perl/Python:

https://github.com/soedinglab/HHsuite
Databases can be downloaded at:

http://wwwuser.gwdg.de/ compbiol/data/hhsuite/databases/hhsuite_dbs/

2.1 Supported platforms and hardware requirements

HHsuite needs a 64 bit system to read files larger than 4 GB. HHsuite has been extensively tested
on 64 bit Linux, in particular Arch Linux, Debian, Ubuntu, Scientific Linux (SL), and Red Hat.
We have done limited testing under BSD, MAX OS X, and CygWin. We plan to offer a 64 bit
Windows version compiled under MinGW in the future.

HHsuite typically requires at least 4GB of main memory. Memory requirements can be estimated
as follows:

Memory req. = query_length x max_db_seq_length x num_threads x (4 (SSE) or 8 (AVX2))B
+ query_length x max_db_seq_length x num_threads x 8B + 1GB
Here, num_threads is the number of threads specified with option —~cpu <int>.

Due to the high number of random file accesses by HHblits, it is important for good efficiency that
the databases used by HHblits are placed in RAM disk or on a local solid state drive (SSD). See
section 2.5 for details.

Support for SSSE3 instruction set

HHblits needs to run on CPUs supporting at least the SSSE3 (Supplemental Streaming SIMD
Extensions 3) instruction set. (See https://en.wikipedia.org/wiki/SSSE3 for an explanation of

http://hhpred.tuebingen.mpg.de
http://hhpred.tuebingen.mpg.de
http://predictioncenter.org/casp9/groups_analysis.cgi?type=server&tbm=on
http://hmmer.org/
https://en.wikipedia.org/wiki/SSSE3

SSSE3.) Starting with the Woodcrest Xeons in 2006, all Intel CPUs support SSSE3. By default, the
HHsuite binaries are compiled using the most evolved supported instruction set on the computer
used for compiling.

However, you may limit the used instruction set to SSSE3 with the cmake compile flag ~-DHAVE_SSSE3=1
The precompiled standard binaries are compiled with this flag.

2.2 Installation from source code

1. Download the sources from https://github.com/soedinglab/hh-suite/releases, for exam-
ple

$ mkdir ~/programs/hh/
$ cd ~/programs/hh/
$ wget https://github.com/soedinglab/hh-suite/releases/.../hhsuite-3.0-beta.l-Source.tar.gz

2. Then unzip and untar the file
$ tar -xzvf hhsuite-3.0-beta.l-Source.tar.gz

This will unpack the sources to hhsuite-<VERSION>.

3. Compilation: Run make in the source directory:

$ cd hhsuite-<VERSION>/

$ mkdir build

$ cd build

$ cmake -DCMAKE_BUILD_TYPE=RelWithDebInfo -G "Unix Makefiles" \\
-DCMAKE_INSTALL_PREFIX=${INSTALL_BASE_DIR} ..

$ make

$ make install

Set ${INSTALL_BASE_DIR} to the absolute path of the base directory where you want install HH-
suite. For example, to install into /usr/local/hhsuite:

$ cmake -DCMAKE_BUILD_TYPE=RelWithDebInfo -G "Unix Makefiles" \\
-DCMAKE_INSTALL_PREFIX=/usr/local/hhsuite ..

The HHsuite binaries will then be put into /usr/local/hhsuite/bin.

4. Set HHLIB and paths: In your shell, set the environment variable HHLIB to ${INSTALL_BASE_DIR},
e.g, for bash, zsh, or ksh,

$ export HHLIB=${INSTALL_BASE_DIR}

and, for csh or tcsh: $ setenv HHLIB=${INSTALL_BASE_DIR}. HHsearch and HHblits look for the
column state library file cs219.1ib and the context library file context_data.crf in $HHLIB/data/.
The HHsuite python/perl scripts also read HHLIB (via file scripts/HHPaths. pm) to locate HHsuite
binaries and data files.

Put the location of your HHsuite binaries and scripts into your search path:

https://github.com/soedinglab/hh-suite/releases

$ export PATH=$PATH:$HHLIB/bin:$HHLIB/scripts

To avoid typing these commands every time you open a new shell, you may add the following lines
to the .bashrc, .kshrc, .cshrc or equivalent file in your home directory that is executed every
time a shell is started:

export HHLIB=/usr/local/
PATH=$PATH: $HHLIB/bin>:$HHLIB/scripts
alias hhblits=’hhblits -d <path_to/uniprot20>’

The last line defines a default database for hhblits.

2.3 Package installation
Installation under x86 64bit Linux with the red hat package manager RPM

If you use a RPM based distribution like Scientific Linux (SL), Red Hat Enterprise Linux (RHEL)
or CentOS we provide precompiled x86_64 packages for Version 6.x, which might also work on
Version 5.x and other RPM based distros like SuSE.

1. Download and install:

$ cd <path> # wherever you want to install HHsuite
$ wget https://github.com/soedinglab/hh-suite/releases/.../hhsuite-3.0-beta.1-Linux.rpm
$ rpm -hvU hhsuite-3.0-beta.l-Linux.rpm

2. Set paths: To allow the HHsuite perl scripts to find the binaries, set the HHLIB variable to
your hh directory and put the location of your HHsuite binaries and scripts into your search path:

$ export HHLIB=<path>/hhsuite-<version>
$ export PATH=$PATH:$HHLIB/bin:$HHLIB/scripts

To avoid typing these commands every time you open a new shell, you may add the following lines
to the .bashrc, .kshrc, .cshrc or equivalent file in your home directory that is executed every
time a shell is started:

export HHLIB=<path>/hhsuite-<version>

PATH=$PATH: $HHLIB/bin: $HHLIB/scripts

alias hhblits=’hhblits -d <path_to/uniprot20>’

The last line defines a default database for hhblits.

Installation under x86 64bit Linux with the Debian package manager DPKG

To follow.

Installation under x86 64bit Max OS X

To follow.

Installation under x86 64bit BSD Unix

To follow.

2.4 HHsuite databases

The following HHsuite databases, which can be searched by HHblits and HHsearch, can be down-
loaded at http://wwwuser.gwdg.de/~compbiol/data/hhsuite/databases/hhsuite_dbs/:

1 uniprot20 based on UniProt db from EBI/SIB/PIR, clustered to 20 % seq. identity

3 pdb70 representatives from PDB (707 max. sequence identity), updated weekly
4 scop70 representatives from SCOP (70% max. sequence identity)
5 pfamA Pfam A database from Sanger Inst., http://www.sanger.ac.uk/Software/Pfam/

The databases consist of up to eight files, which all start with the name of the database, followed
by different extensions:

<dbname>_cs219.ffdata packed file with column-state sequences for prefiltering
<dbname>_cs219.ffindex index file for packed column-state sequence file

<dbname>_a3m.ffdata packed file with MSAs in A3M format
<dbname>_a3m.ffindex index file for packed A3M file
<dbname>_hhm.ffdata packed file with HHM-formatted HMMs

<dbname>_hhm.ffindex index file for packed HHM file

The packed files <dbname>_cs219.ffdata, <dbname>_hhm.ffdata and <dbname>_a3m.ffdata con-
tain simply the concatenated A3M MSAs and HHMSs, respectively, with a \O character at the
beginning of each file. They are therefore human-readable and are parsable for specific MSAs or
models using tools such as grep or search functions in text editors (which however should be able to
ignore the \0 character). The .ffindex files contain indices to provide fast access to these packed
files.

To get started, download the uniprot20 database files. For example:

$ cd /home/soeding/hh % change to HHsuite directory

$ mkdir databases; cd databases

$ wget http://wwwuser.gwdg.de/ compbiol/data/hhsuite/databases/hhsuite_dbs/uniprot20_2015_06
$ tar -xzvf uniprot20_2015_06.tgz

Note that, in order to generate multiple sequence alignments (MSAs) by iterative sequence searching
using HHblits, you need to search the uniprot20, since since only this databases cover essentially
all of the sequence universe. The pdb70, pfamA, and pdb70 are not appropriate to build MSAs by
iterative searches.

Uniprot20 is obtained by clustering UniProt [4] database from NCBI. Clusters contain sequences
that need to be almost full-length (80%) alignable and typically have pairwise sequence identities
down to 20%-30%. The clustering is done by mmseqs (to be published), a very fast algorithm
for all-against-all sequence comparison and clustering developed in our group. Sequences in each
cluster are globally aligned into an MSA (using ClustalOmega [16]). The clusters in uniprot20 thus
treat all member sequences equally. You need this type of database to build MSAs using iterative
HHblits searches.

In the pdb70 and scop70 databases, each master sequence from the original sequence database is
represented by an MSA. The MSAs are built by HHblits searches starting with the master sequence

http://wwwuser.gwdg.de/~compbiol/data/hhsuite/databases/hhsuite_dbs/

as a query. The MSAs and HMMs typically carry the name and annotation of the master sequence.
In contrast to the clusters in the uniprot20 database, sequences can in principle occur in several
MSAs. These homologous sequences merely serve to contribute evolutionary information to the
master sequence. As the sequences in this type of database do not cover the entire sequence space,
they are not suited for iterative searches. See section 3.5 for how to build your own databases.

Note on efficiency: Always try to keep the HHsuite databases on a local SSD drive of the com-
puter running HHblits/HHsearch, if possible. Otherwise file access times on your (shared) remote
file server of local HD drive might limit the performance of HHblits/HHsearch. For explanations,
see section 2.5.

2.5 Running HHblits efficiently on a computer cluster

When HHblits runs on many cores of a compute cluster and accesses the HHsuite database(s) via
a central file system, hard disk random access times can quickly become limiting instead of the
available compute power. To understand why, let us estimate the random file access bottleneck at
an example. Suppose you want to search the uniprot20 database with HHblits on four compute
nodes with 32 CPU cores each. You let each job run on a single core, which is the most efficient
way when processing many jobs. Each HHblits iteration through uniprot20 on a modern 3GHz
Intel/AMD core takes around, say, 60s on average. After each search iteration, HHblits needs to
read around 3000 a3m or hhm files on disk that passed the prefilter. The total number of expected
file accesses per second is therefore

number of file accesses = 4(nodes) x 32(cores) x 3000(files)/60s = 6400/ s (2)

A typical server hard disk has a latency of around 5ms and can therefore randomly access only 200
files per second. Hence, if all cores need to access the files from the same RAID disk array, only 4
CPU cores would already saturate the RAID’s disk drives! (You can slightly decrease latency by a
factor of two by using RAID configurations with striping, but this won’t help much.)

To efficiently search with HHblits with millions of sequences in parallel on a compute cluster, we
therefore recommend one of the first two options.

1. The ideal solution is to automatically load the needed HHsuite databases from the file system
into the virtual RAM drive of each compute node upon boot-up. This requires enough memory
in your computer. Software for RAM drives exist on all major operating systems. On Linux from
kernel 2.4 upwards, a RAM drive is installed by default at /dev/shm. When memory is low, this
software can intelligently swap rarely used files to a hard drive.

2. Another good option is to hold the HHsuite databases on local solid state drive (SSD) of each
of the cluster’s compute nodes that can accept HHsuite jobs. The local SSDs also remove the file
access bottleneck, as SSDs have typical random access times below 100us. Reading the 3000 files
from SSD after prefiltering therefore will take below 0.3s.

3. Another good option might be to use a RAM disk (or SSD) on your file server to hold the
HHsuite databases. Then file access time is not problematic anymore, but you need to estimate
if data throughput might get limiting. The four servers from our previous example would need to
read data at a rate

transfer rate = 4 (nodes) x 32 (cores) x 3000 (files) x 5kB (av. file size) /60s =256 Mb/s (3)

If you have 16 instead of 4 compute servers or if data transfer from the file server has to be shared
with many other compute servers, the network transfer may be limiting the performance.

4. A not so good option is to keep the HHsuite databases on local hard disk drives (HDDs). In this
way, you at least distribute the file accesses to as many HDDs as you have compute nodes. But

as we have seen, already at around 4 cores per HDD, you will be limited by file access rather than
CPU power.

5. You (or your sysadmin) should at least make sure that your compute nodes have sufficient
memory reserves and proper cache settings in order to keep the prefiltering database file in cache
(size: a few GB). You can check this by running HHblits on a fresh compute node twice and
observing that the second run takes much less time to read the prefiltering database file. But this
only solves the problem of having to read the prefiltering file every time hhblits is called. But, as
discussed, the usually more serious bottleneck is reading the a3m and hhm files that passed the
prefilter via the file system. These can also be cached, but since each time only a small subset of
all files are read, caching is inefficient for these.

3 Brief tutorial to HHsuite tools

3.1 Overview of programs

hhblits (Iteratively) search an HHsuite database with a query sequence or MSA
hhsearch Search an HHsuite database with a query MSA or HMM

hhmake Build an HMM from an input MSA

hhfilter Filter an MSA by max sequence identity, coverage, and other criteria
hhalign Calculate pairwise alignments etc. for two HMMs/MSAs

hhconsensus Calculate the consensus sequence for an A3M/FASTA input file
reformat.pl Reformat one or many MSAs

addss.pl Add PSIPRED predicted secondary structure to an MSA or HHM file

hhmakemodel.pl Generate MSAs or coarse 3D models from HHsearch or HHblits results

hhmakemodel.py Generates coarse 3D models from HHsearch or HHblits results and modifies
cif files such that they are compatible with MODELLER

hhsuitedb.py Build HHsuite database with prefiltering, packed MSA/HMM, and index files

splitfasta.pl ©Split a multiple-sequence FASTA file into multiple single-sequence files

renumberpdb.pl Generate PDB file with indices renumbered to match input sequence indices

Align.pm Utility package for local and global sequence-sequence alignment
HHPaths.pm Configuration file with paths to the PDB, BLAST, PSIPRED etc.
mergeali.pl Merge MSAs in A3M format according to an MSA of their seed sequences

pdb2fasta.pl Generate FASTA sequence file from SEQRES records of globbed pdb files
cif2fasta.py Generate a FASTA sequence from the pdbx_seq_one_letter_code entry

of the entity_poly of globbed cif files
pdbfilter.pl Generate representative set of PDB/SCOP sequences from pdb2fasta.pl output
pdbfilter.py Generate representative set of PDB/SCOP sequences from cif2fasta.py output

Call a program without arguments or with ~h option to get more detailed explanations.

3.2 Searching databases of HMMs using HHsearch and HHblits

We will use the MSA query.a3m in the data/ subdirectory of the HHsuite as an example query.
To search for sequences in the scop70_1.75 database that are homologous to the query sequence
or MSA in query.a3m, type

$ hhsearch -cpu 4 -i data/query.a3m -d dbs/scop70_1.75 -o data/query.hhr

(The database scop70_1.75 can be obtained from http://wwwuser.gwdg.de/~compbiol/data/
hhsuite/databases/hhsuite_dbs/scop70_1.75.tar.gz. If the input file is an MSA or a single

10

http://wwwuser.gwdg.de/~compbiol/data/hhsuite/databases/hhsuite_dbs/scop70_1.75.tar.gz
http://wwwuser.gwdg.de/~compbiol/data/hhsuite/databases/hhsuite_dbs/scop70_1.75.tar.gz

sequence, HHsearch calculates an HMM from it and then aligns this query HMM to all HMMs
in the scop70_1.75 database using the Viterbi algorithm. After the search, the most significant
HMMs are realigned using the more accurate Maximum Accuracy (MAC) algorithm (subsection
4.6). After the realignment phase, the complete search results consisting of the summary hit list
and the pairwise query-template alignments are written to the output file, data/query.hhr. The
hhr result file format was designed to be human readable and easily parsable.

The -cpu 4 option tells HHsearch to start four openMP threads for searching and realignment.
This will typically results in almost fourfold faster execution on computers with four or more cores.
Since the management of the threads costs negligible overhead, this option could be given by default
through an alias definition of hhsearch and hhblits (see section 2.1).

Roc-Plot
10000

— HHblits, 2.2.1 ! g
HHsearch_1.6.0.0

8000 |- g : i
so00 L | /

4000 | ; - .

superfamily weighted TPs

2000 - . g :

0 . ! by 1 L
1 10 100 1000 10000

superfamily weighted FPs

Figure 1: Benchmark of HHsearch and HHblits on a SCOP20 dataset.

The HHblits tool can be used in much the same way as HHsearch. It takes the same input data and
produces a results file in the same format as HHsearch. Most of the HHsearch options also work
for HHblits, which has additional options associated with its extended functionality for iterative
searches. Due to its fast prefilter, HHblits runs between 30 and 3000 times faster than HHsearch
at the cost of only a few percent lower sensitivity (Fig. 1).

The same search as above is performed here using HHblits instead of HHsearch:
$ hhblits -cpu 4 -i data/query.a3m -d dbs/scop70_1.75 -o data/query.hhr -n 1

HHblits first scans the column state sequences in scop70_1.75_cs219.ffdata with its fast pre-
filter. HMMs whose column state sequences pass the prefilter are read from the packed file
scop70_1.75_hhm.ffdata (using the index file scop70_1.75_hhm.ffindex) and are aligned to
the query HMM generated from query.a3m using the slow Viterbi HMM-HMM alignment algo-
rithm. The search results are written to the default output file query.hhr. The option -n 1 tells
HHblits to perform a single search iteration. (The default is 2 iterations.)

3.3 Generating a multiple sequence alignment using HHblits

To generate an MSA for a sequence or initial MSA in query.a3m, the database to be searched
should cover the entire sequence space, such as uniprot20 or nr20. The option -0a3m <msa_file>
tells HHDlits to generate an output MSA from the significant hits, -n 1 specifies a single search
iteration.

11

$ hhblits -cpu 4 -i data/query.seq -d dbs/uniprot20 -oa3m query.a3m -n 1

At the end of the search, HHblits reads from the packed database file containing the MSAs the
sequences belonging to HMMs with E-value below the threshold. The E-value threshold for inclusion
into the MSA can be specified using the -e <E-value> option. After the search, query.a3m will
contain the MSA in A3M format.

We could do a second search iteration, starting with the MSA from the previous search, to add
more sequences. Since the MSA generated after the previous search contains more information
than the single sequence in query.seq, searching with this MSA will probably result in many more
homologous database matches.

$ hhblits -cpu 4 -i query.a3m -d dbs/uniprot20 -oa3m query.a3m -n 1
Instead, we could directly perform two search iterations starting from query.seq:
$ hhblits -cpu 4 -i data/query.seq -d dbs/uniprot20 -o0a3m query.a3m -n 2

See section 4.10 for an explanation why the results can be slightly different.

In practice, it is recommended to use between 1 and 4 iterations for building MSAs, depending on
the trade-off between reliability and specificity on one side and sensitivity for remotely homologous
sequences on the other side. The more search iterations are done, the higher will be the risk of
non-homologous sequences or sequence segments entering the MSA and recruiting more of their
kind in subsequent iterations. This is particularly problematic when searching with sequences
containing short repeats, regions with amino acid compositional bias and, although less dramatic,
with multiple domains. Fortunately, this problem is much less pronounced in hhblits as compared
to PSI-BLAST due to hhblits’s lower number of iterations, its more robust Maximum Accuracy
alignment algorithm, and the higher precision of its HMM-HMM alignments.

The parameter mact (maximum accuracy threshold) lets you choose the trade-off between sensitivity
and precision. With a low mact-value (e.g. -mact 0.01) very sensitive, but not so precise alignments
are generated, whereas a search with a high mact-value (e.g. -mact 0.9) results in shorter but very
precise alignments. The default value of mact in HHblits is 0.35 (changed from 0.5 in the beta
version).

To avoid unnecessarily large and diverse MSAs, HHblits stops iterating when the diversity of the
query MSA — measured as number of effective sequences, see section 6.1 — grows passed a threshold
of 10.0. This threshold can be modified with the ——neffmax <float> option. See subsection 6.2
for a description of how the number of effective sequences is calculated in HHsuite.

To avoid the final MSAs to grow unnecessarily large, by default the database MSAs that are going
to be merged with the query MSA into the result MSA are filtered with the active filter options
(by default -id 90 and -diff 1000). The -all option turns off the filtering of the result MSA.
Use this option if you want to get all sequences in the significantly similar uniprot20 clusters:

$ hhblits -cpu 4 -i data/query.seq -d dbs/uniprot20 -oa3m query.a3m -all

The A3M format uses small letters to mark inserts and capital letters to designate match and delete
columns (see subsection 6.1), allowing you to omit gaps aligned to insert columns. The A3M format
therefore uses much less space for large alignments than FASTA but looks misaligned to the human
eye. Use the reformat.pl script to reformat query.a3m to other formats, e.g. for reformatting the
MSA to Clustal and FASTA format, type

12

$ reformat.pl a3m clu query.a3m query.clu
$ reformat.pl a3m fas query.a3m query.fas

Next, to add secondary structure information to the MSA we call the script addss.pl. For
addss.pl to work, you have to make sure that the paths to BLAST and PSIPRED in the file
$HHLIB/scripts/HHPaths.pm are correctly filled in. Then type

$ addss.pl query.a3m

When the sequence has a SCOP or PDB identifier as first word in its name, the script tries to
add the DSSP states as well. Open the query.a3m file and check out the two lines that have been
added to the MSA. Now you can generate a hidden Markov model (HMM) from this MSA:

$ hhmake -i query.a3m

The default output file is query.hhm. By default, the option -M first will be used. This means
that exactly those columns of the MSAs which contain a residue in the query sequence will be
assigned to Match / Delete states, the others will be assigned to Insert states. (The query sequence
is the first sequence not containing secondary structure information.) Alternatively, you may want
to apply the 50%-gap rule by typing -M 50, which assigns only those columns to Insert states
which contain more than 50% gaps. The -M first option makes sense if your alignment can best
be viewed as a seed sequence plus aligned homologs to reinforce it with evolutionary information.
This is the case in the SCOP and PDB versions of our HMM databases, since here MSAs are
built around a single seed sequence (the one with known structure). On the contrary, when your
alignment represents an entire family of homologs and no sequence in particular, it is best to use
the 50% gap rule. This is the case for Pfam or SMART MSAs, for instance. Despite its simplicity,
the 50% gap rule has been shown to perform well in practice.

When calling hhmake, you may also apply several filters, such as maximum pairwise sequence
identity (-id <int>), minimum sequence identity with query sequence (-qid <int>), or minimum
coverage with query (-cov <int>). But beware of reducing the diversity of your MSAs too much,
as this will lower the sensitivity to detect remote homologs.

Previous versions of HHsuite (the "HHsearch package’) included a perl script buildali.pl to build
MSAs for a query sequence using PSI-BLAST as its search engine. Because HHblits performs
better than PSI-BLAST in all aspects that we have tested, we decided to remove this script from
HHsuite. It can still be downloaded as part of HHsearch version 1.5.0.

Example: Comparative protein structure modeling using HHblits and MOD-
ELLER

A three-dimensional (3D) structure greatly facilitates the functional characterization of proteins.
However, for many proteins there are no experimental structures available, and thus, comparative
modeling to known protein structures may provide useful insights. In this method, a 3D structure
of a given protein sequence (target) is predicted based on alignments to one or more proteins of
known structures (templates). In the following, we demonstrate how to create alignments for a
unresolved protein with HHblits and the PDB70 database. We then convert search results from
HHblits to build a comparative model using MODELLER (v9.16).

In 1999, Wu et all. reported the genomic sequence and evolutionary analysis of lactate dehydroge-
nase genes from Trichomonas vaginalis (TvLDH). Surprisingly, the corresponding protein sequence
was most similar to the malate dehydrogenase (TvMDH) of the same organism implying TvLDH

13

arose from TvMDH by convergent evolution. In the meantime, the structure of TvLDH has been
resolved, however, for instructional purposes suppose that there is no 3D structure for the protein.

To get started we obtain the protein sequence of TvLDH from GeneBank (accession number
AF060233.1). We first copy-paste the protein sequence into a new file named query.seq. The
content of this file should somewhat look similar to this.

>TvLDH
MSEAAHVLITGAAGQIGYILSHWIASGELYGDRQVYLHLLDIPPAMNRLTALTMELEDCAFPHLAGFVATTDP
KAAFKDIDCAFLVASMPLKPGQVRADLISSNSVIFKNTGEYLSKWAKPSVKVLVIGNPDNTNCETAMLHAKNL
KPENFSSLSMLDQNRAYYEVASKLGVDVKDVHDIIVWGNHGESMVADLTQATFTKEGKTQKVVDVLDHDYVFD
TFFKKIGHRAWDILEHRGFTSAASPTKAAIQHMKAWLFGTAPGEVLSMGIPVPEGNPYGIKPGVVFSFPCNVD
KEGKIHVVEGFKVNDWLREKLDFTEKDLFHEKEIALNHLAQ

The search results obtained by querying the TvLDH sequence against the PDB70 will be signif-
icantly better if we use a MSA instead of a single sequence. For this reason, we first query the
protein sequence of TvLDH against the uniprot20 database which covers the whole protein sequence
space. By executing

$ hhblits -i query.seq -d uniprot -oa3m query.a3m -cpu 4 -n 1

we obtain a MSA in a3m format which contains several sequences that are similar to TvLDH. Now
we can use the query.a3m and search the PDB70 database for similar protein structures.

$ hhblits -i query.a3m -o results.hhr -d pdb70 -cpu 4 -n 1

Note that we now output a hhr file results.hhr instead of an adm file. Before we convert the
search results to a format that is readable by MODELLER, let us quickly inspect results.hhr.

Query TvLDH
Match_columns 333
No_of_segs 2547 out of 8557

Neff 11.6151

Searched_HMMs 1566

Date Tue Aug 16 11:35:02 2016

Command hhblits -i query.a3m -o results.hhr -d pdb70 -cpu 32 -n 2

No Hit Prob E-value P-value Score SS Cols Query HMM Template HMM
1 7MDH_C MALATE DEHYDROGENASE; C 100.0 1.5E-39 1.3E-43 270.1 0.0 326 3-333 31-358 (375)
2 4UUL_A L-LACTATE DEHYDROGENASE 100.0 1.8E-35 1.6E-39 244.5 0.0 332 1-332 1-332 (341)
3 4UUP_A MALATE DEHYDROGENASE (E 100.0 2.2E-35 1.9E-39 243.8 0.0 332 1-332 1-332 (341)
4 AUUM_B L-LACTATE DEHYDROGENASE 100.0 5.7E-35 5.1E-39 241.5 0.0 333 1-333 1-333 (341)
5 1CIV_A NADP-MALATE DEHYDROGENA 100.0 1.6E-34 1.5E-38 241.3 0.0 326 2-332 40-367 (385)
6 1Y7T_A Malate dehydrogenase(E. 100.0 3.4E-34 3.1E-38 235.3 0.0 324 1-331 1-325 (327)
7 4I1I_A Malate dehydrogenase (E 100.0 3.8E-34 3.4E-38 236.4 0.0 319 2-327 22-343 (345)
8 1BMD_A MALATE DEHYDROGENASE (E 99.9 5.9E-34 5.3E-38 233.9 0.0 324 1-331 1-325 (327)
9 4H7P_B Malate dehydrogenase (E 99.9 9.9E-34 8.9E-38 233.9 0.0 319 2-327 22-343 (345)
10 2EWD_B lactate dehydrogenase, 99.9 1.1E-33 9.5E-38 231.1 0.0 306 1-328 1-314 (317)

We find that there are several templates that have a high similarity to our query. Interestingly, the
hit with the most significant E-value score is also malate dehydrogenase. We will use this structure
as a basis for our comparative model. In order to build the model we first have to obtain the
template structure(s). We can get TMDH by typing the following commands

14

http://www.ncbi.nlm.nih.gov/nuccore/AF060233

mkdir templates

cd templates

wget http://files.rcsb.org/download/7MDH.cif
cd ..

©H H H P

To convert our search results results.hhr into an alignment that is readable by MODELLER we
use hhmakemodel . py.

$ python3 hhmakemodel.py results.hhr templates/ TvLDH.pir ./ -m 1

This script takes four positional arguments: the results file in hhr format, the path to the folder
containing all templates in cif format, the output pir file, and folder where the processed cif files
should be written to. The -m flag tells hhmakemodel.py to only include the first hit in the pir
alignment. The pir file together with processed cifs can be used as an input for MODELLER
(please refer to the MODELLER documentation for further help).

3.4 Visually checking an MSA for corrupted regions

Iterative search methods such as PSI-BLAST and HHblits may generate alignments containing
non-homologous sequence stretches or even large fractions of non-homologous sequences. The
cause for this is almost always the overextension of homologous alignments into non-homologous
regions. This has been termed homologous overextension in [17]. This effect occurs particularly in
multidomain and repeat proteins. A single overextended alignment in the search results leads to
more of such sequences to be included in the profile of the next iteration — usually all homologous
to the first problematic sequence but with even longer non-homologous stretches. Thus, after three
or more iterations, large sections of the resulting MSA may be non-homologous to the original
query sequence. This risk of homologous overextension is greatly reduced in HHblits in comparison
to PSI-BLAST, because fewer iterations are usually necessary for HHblits and because HHblits
uses the Maximum Accuracy alignment algorithm (see section 4.6), which is much less prone to
overextend alignments than the Smith-Waterman /Viterbi algorithm used by most other programs
including PSI-BLAST. Still, in important cases it is worth to visually check the MSAs of the query
and the matched database protein for the presence of corrupted regions containing non-homologous
sequence stretches.

The recommended procedure to visually check an MSA is the following. We first reduce the MSA
to a small set of sequences that could still fit into a single window of an alignment viewer:

$ hhfilter -i query.a3m -o query.fil.a3m -diff 30

The option —-diff causes hhfilter to select a representative set of at least 30 sequences that best rep-
resent the full diversity of the MSA. Sequences that contain non-homologous stretches are therefore
usually retained, as they tend to be the most dissimilar to the main sequence cluster.

Next, we remove all inserts (option -r) with respect to the first, master sequence in the MSA. The
resulting MSA is sometimes called a master-slave alignment;:

$ reformat.pl -r query.fil.a3m query.fil.fas

This alignment is now very easy to inspect for problematic regions in any viewer that allows to
color the residues according to their physico-chemical properties. We can recommend alnedit
(downloadable from www.eb.tuebingen.mpg.de/?id=421) or jalview, for example:

$ java -jar "/bioinfo/alnedit.jar query.fil.fas .

15

www.eb.tuebingen.mpg.de/?id=421

3.5 Building customized databases

It is simple to build custom HHsuite databases using the same tools we use to build the standard
HHsuite databases (except uniprot20). An example application is to search for homologs among
all proteins of an organism. To build your own HHsuite database from a set of sequences, you first
need to generate an MSA with predicted secondary structure for every sequence in the set.

First of all we split the concatenated fasta file to an flindex with flindex_from_fasta.
$ ffindex_from_fasta -s <db>_fas.ff{data,index} <db.fas>

Now, to build an MSA with HHblits for each sequence in <db>_fas.ff{data,index}, run

$ mpirun -np <number_threads> ffindex_apply_mpi <db>_fas.ff{data,index} \\
-1 <db>_a3m_wo_ss.ffindex -d <db>_a3m_wo_ss.ffdata —-
hhblits -d <path_to/uniprot20> -i stdin -oa3m stdout -n 2 -cpu 1 -v O

The MSAs are written to the flindex <db>_a3m_wo_ss.ff{data, index}. To be sure that everything
went smoothly, check that the number of lines in <db>_a3m.ffindex is the same as the number of
lines in <db>_fas.ffindex.

The number of HHblits search iterations and the HMM inclusion E-value threshold for HHblits
can be changed from their default values (2 and 0.01, respectively) using the ’-n <int>’ and
’—e <float>’ options. A higher number of iterations such as >-n 3’ will result in very high sensi-
tivity to discover remotely homologous relationships, but the ranking among homologous proteins
will often not reflect their degree of relationship to the query. The reason is that any similarities
that are higher than the similarities among the sequences in the query and database MSAs cannot
be resolved.

Now, add PSIPRED-predicted secondary structure and if possible DSSP secondary structure an-
notation to all MSAs:

$ mpirun -np <number_threads> ffindex_apply_mpi <db>_a3m_wo_ss.ff{data,index} \\
-i <db>_a3m.ffindex -d <db>_a3m.ffdata -- addss.pl -v O stdin stdout
$ rm <db>_a3m_wo_ss_a3m.ff{data,index}

We also need to generate an HHM file for each MSA file:

$ mpirun -np <number_threads> ffindex_apply_mpi <db>_a3m.ff{data,index} \\
-i <db>_hhm.ffindex -d <db>_hhm.ffdata -- hhmake -i stdin -o stdout -v O

In order to build the ffindex containing the column state sequences for prefiltering for each a3m we
run:

$ OMP_NUM_THREADS=<number_threads> cstranslate -A ${HHLIB}/data/cs219.1ib \\
-D ${HHLIB}/data/context_data.lib -x 0.3 -c 4 -f -i <db>_a3m \\
-0 <db>_cs219 -I a3m -b

$ ffindex_build -as <db>_cs219.ff{data,index}

Next we want to optimize the hmm and a3m ffindices. For this purpose we sort the files in the data
files according to the number of columns in the MSAs. The number of columns can be retrieved in
the third row of <db>_cs219.ffindex.

16

$ sort -k3 -n <db>_cs219.ffindex | cut -f1 > sorting.dat

$ ffindex_order sorting.dat <db>_hhm.ff{data,index} <db>_hhm_ordered.ff{data,index}
$ mv <db>_hhm_ordered.ffindex <db>_hhm.ffindex
$ mv <db>_hhm_ordered.ffdata <db>_hhm.ffdata

$ ffindex_order sorting.dat <db>_a3m.ff{data,index} <db>_a3m_ordered.ff{data,index}
$ mv <db>_a3m_ordered.ffindex <db>_a3m.ffindex
$ mv <db>_a3m_ordered.ffdata <db>_a3m.ffdata

As with all perl/python scripts and binaries in the HHsuite, a list of additional options can be
retrieved by calling the scripts without parameters.

Example: Building a database from the PDB

To make efficient sequence searches in the PDB we provide a precompiled PDB70 database con-
taining PDB sequences clustered at 70 % sequence identity. However, to find a larger variety of
PDB templates, larger databases with more redundancy are required. For this reason, the HHsuite
provides tools to build a custom PDB database. In this tutorial, we describe the steps required to
build a custom PDB database.

First, download the entire PDB database from RSCB in cif file format (this is the successor of the
pdb file format) by executing

$ rsync --progress -rlpt -v -z --port=33444 rsync.wwpdb.org::ftp/data/structures/
divided/mmCIF <cif_dir>

and unzip the files into a single directory <all_cifs>. Then, run cif2fasta.py by typing
$ python3 cif2fasta.py -i <all_cifs> -o pdb100.fas -c <num_cores> -p pdb_filter.dat

The script scans the folder <all_cifs> for files with the suffix *. cif and write each sequence and its
associated chain identifier annotated in pdbx_seq_one_letter_code entry from the entity_poly
table to the fasta file pdb100.fas. By specifying the optional -p flag, cif2fasta.py creates an
additional file pdb_filter.dat which is required by pdbfilter.py in a later step. Note that
cif2fasta.py by default removes sequences which are shorter than 30 residues and/or comprise
only the residue 'X’.

If you wish to exhaustively search the PDB, skip the following steps and continue with the in-
structions described in Section 3.5. However, to increase the speed of database searches, e.g. on
systems with limited resources, you can reduce the number of sequences by clustering them with
MMSeqs and selecting representative sequences with pdbfilter.py. To cluster the sequences of
pdb100.fas at a sequence identity of X and a coverage of Y run MMSeqs using these options.

$ mmseqs createdb pdb100.fas <clu_dir>/pdb100

$ mmseqs clusteringworkflow <clu_dir>/pdb100 <clu_dir>/pdbXX_clu
/tmp/clustering -c Y --min-seq-id X

$ mmseqs createtsv <clu_dir>/pdb100 <clu_dir>/pdb100 <clu_dir>/pdbXX_clu
<clu_dir>/pdbXX_clu.tsv

17

http://www.rcsb.org/pdb/static.do?p=download/ftp/index.html

MMSeqs yields tab separated file pdbXX_clu.tsv which contains cluster assignments for all se-
quences. Representative sequences are selected by pdbfilter.py which chooses up to three se-

quences for each cluster by identifying the ones having either the highest resolution (A), the largest
R-free value or the largest ”completeness”!.

$ python3 pdbfilter.py pdbl00.fas pdbXX_clu.tsv pdb_filter.dat pdbXX.fas
—-i pdb70_to_include.dat -r pdb70_to_remove.dat

pdbfilter.py takes the original fasta file (pdb100.fas) and the annotation file pdb_filter.dat
which both were created by cif2fasta.py, and the cluster assignments from MMSeqs (pdb70_clu.tsv)
as input and outputs the final pdbXX.fas. Use this fasta file to complete the creation of your
database (see Section 3.5).

3.6 Modifying or extending existing databases

Assume you have a list of filenames in files.dat you want to remove from an HHsuite database.

$ ffindex_modify -s -u -f files.dat <db>_a3m.ffindex
$ ffindex_modify -s -u -f files.dat <db>_hhm.ffindex
$ ffindex_modify -s -u -f files.dat <db>_cs219.ffindex

This deletes the file entries from the flindex files, however the files are still in the fidata file. This
way HHblits and HHsuite won’t be able to use them. If you want to get rid of them in the ffdata
file you may re-optimize the databases.

$ ffindex_build -as <db>_cs219_ordered.ff{data,index} \\
-i <db>_cs219.ffindex -d <db>_cs219.ffdata

$ mv <db>_c219_ordered.ffindex <db>_cs219.ffindex

$ mv <db>_cs219_ordered.ffdata <db>_cs219.ffdata

$ sort -k3 -n <db>_cs219.ffindex | cut -f1 > sorting.dat

$ ffindex_order sorting.dat <db>_hhm.ff{data,index} <db>_hhm_ordered.ff{data,index}
$ mv <db>_hhm_ordered.ffindex <db>_hhm.ffindex
$ mv <db>_hhm_ordered.ffdata <db>_hhm.ffdata

$ ffindex_order sorting.dat <db>_a3m.ff{data,index} <db>_a3m_ordered.ff{data,index}
mv <db>_a3m_ordered.ffindex <db>_a3m.ffindex
$ mv <db>_a3m_ordered.ffdata <db>_a3m.ffdata

©“

If you want to check your HHsuite database you may run:
$ hhsuitedb.py -o <db> --cpu 1

hhsuitedb.py supports the flag ——force that tries to fix the database. This may lead to the
deletion of MSAs from the database.

"We compute the completeness of a protein structure by dividing the number of residues that are found in the
ATOM section by the total number of residues declared in the pdbx_seq_one_letter_code entry of the entity_poly table.

18

Additionally you may add a3m, hhm and cs219 files with globular expressions to an existing
database. Please keep in mind that related a3m, hhm and c¢s219 files should have the same name.
To make it easier you may add just a3m files and the corresponding hhm and ¢s219 files will be
calculated by the script.

$ hhsuitedb.py -o <db> --cpu 1 --ia3m=<a3m_glob> --ics219=<cs219_glob> --ihhm=<hhm_glob>

4 Frequently asked questions

4.1 How do I report a bug?

If you think you found a bug, PLEASE report it to us. But we would be grateful if you could
first make sure that the problem is not due to wrong usage or wrong file formats. Please reread
the relevant sections of the user guide and check for possible warnings. Rerun the command with
verbose option -v 3 or -v 4 to see if you can find where things go awry. If the problem persists,
we will need everything to reproduce the bug on our machines. Please send us (1) the input file,
(2) the database name and version, or, if it is not a standard database, the link to your ftp server
to download the database files, (3) the output files, best with -v 3 or -v 4 option, (4) the command
and its screen output, (5) the operating system and CPU description on which the bug occurred.
Under Linux, please send the output of

$ echo $HHLIB $PATH; uname -a; lsb_release -a; head -n 25 /proc/cpuinfo; ulimit -a; free

to soeding@mpibpc.mpg.de. Thanks a lot!

4.2 What is HMM-HMM comparison and why is it so powerful?

When searching for remote homologs, it is wise to make use of as much information about the
query and database proteins as possible in order to better distinguish true from false positives
and to produce optimal alignments. This is the reason why sequence-sequence comparison is
inferior to profile-sequence comparison. Sequence profiles contain for each column of a multiple
alignment the frequencies of the 20 amino acids. They therefore contain detailed information about
the conservation of each residue position, i.e., how important each position is for defining other
members of the protein family, and about the preferred amino acids. Profile Hidden Markov Models
(HMMs) are similar to simple sequence profiles, but in addition to the amino acid frequencies in
the columns of a multiple sequence alignment they contain information about the frequency of
inserts and deletions at each column. Using profile HMMs in place of simple sequence profiles
should therefore further improve sensitivity. Using HMMs both on the query and the database
side greatly enhances the sensitivity/selectivity and alignment quality over sequence-profile based
methods such as PSI-BLAST. HHsearch is the first software to employ HMM-HMM comparison
and HHDblits is the first profile-profile comparison method that is fast enough to do iterative searches
to build MSAs.

4.3 When can the HHsuite be useful for me?

Sequence search methods such as BLAST, FASTA, or PSI-BLAST are of prime importance for
biological research because functional information of a protein or gene can be inferred from homol-
ogous proteins or genes identified in a sequence search. But quite often no significant relationship
to a protein of known function can be established. This is certainly the case for the most interesting
group of proteins, those for which no ortholog has yet been studied. In cases where conventional

19

soeding@mpibpc.mpg.de

sequence search methods fail, HHblits and HHsearch quite often allow to make inferences from
more remotely homologous relationships. HHblits builds better MSAs, with which more remote
homologs can then be found using HHsearch or HHblits, e.g. by searching the PDB or domain
databases such as Pfam. If the relationship is so remote that no common function can be assumed,
one can often still derive hypotheses about possible mechanisms, active site positions and residues,
or the class of substrate bound [18,19]. When a homologous protein with known structure can
be identified, its stucture can be used as a template to model the 3D structure of the protein of
interest [20], since even protein domains that shared a common ancestor some 3 billion years ago
mostly have similar 3D structures [21-23]. The 3D model may then help to generate hypotheses
to guide experiments.

4.4 What does homology mean and why is it important?

Two protein sequences are homologous to each other if they descended from a common ancestor
sequence. Generally, homologous proteins (or protein fragments) have similar structure because
structures diverge much more slowly than their sequences [24]. Depending on the degree of diver-
gence between the sequences, the proteins may also have similar cellular functions, ligands, protein
interaction partners, or enzymatic mechanisms [18]. On the contrary, proteins that have a similar
structure by convergence (i.e., by chance) are said to be analogous. They don’t generally share
similar functions or biochemical mechanisms and are therefore much less helpful for making infer-
ences. HHsearch and HHblits are tools for homology detection and as such do not normally detect
analogous relationships [23,25].

4.5 How can I verify if a database match is homologous?

Here is a list of things to check if a database match really is at least locally homologous.

Check probability and E-value: HHsearch and HHblits can detect homologous relationships far
beyond the twilight zone, i.e., below 20% sequence identity. Sequence identity is therefore not an
appropriate measure of relatedness anymore. The estimated probability of the template to be (at
least partly) homologous to your query sequence is the most important criterion to decide whether
a template HMM is actually homologous or just a high-scoring chance hit. When it is larger
than 95%, say, the homology is nearly certain. Roughly speaking, one should give a hit serious
consideration (i.e., check the other points in this list) whenever (1) the hit has > 50% probability,
or (2) it has > 30% probability and is among the top three hits. The E-value is an alternative
measure of statistical significance. It tells you how many chance hits with a score better than this
would be expected if the database contained only hits unrelated to the query. At E-values below
one, matches start to get marginally significant. Contrary to the probability, when calculating
the E-value HHsearch and HHblits do not take into account the secondary structure similarity.
Therefore, the probability is a more sensitive measure than the E-value.

Check if homology is biologically suggestive or at least reasonable: Does the database
hit have a function you would expect also for your query? Does it come from an organism that is
likely to contain a homolog of your query protein?

Check secondary structure similarity: If the secondary structure of query and template is
very different or you can’t see how they could fit together in 3D, then this is a reason to distrust
the hit. Note however that if the query alignment contains only a single sequence, the secondary
structure prediction is quite unreliable and confidence values are overestimated.

Check relationship among top hits: If several of the top hits are homologous to each other,
(e.g. when they are members of the same SCOP superfamily), then this will considerably reduce

20

the chances of all of them being chance hits, especially if these related hits are themselves not very
similar to each other. Searching the SCOP database is very useful precisely for this reason, since
the SCOP family identifier (e.g. a.118.8.2) allows to tell immediately if two templates are likely
homologs.

Check for possible conserved motifs: Most homologous pairs of alignments will have at least
one (semi-)conserved motif in common. You can identify such putative (semi-)conserved motifs by
the agglomeration of three or more well-matching columns (marked with a ’|’ sign between the
aligned HMMSs) occurring within a few residues, as well as by matching consensus sequences. Some
false positive hits have decent scores due to a similar amino acid composition of the template. In
these cases, the alignments tend to be long and to lack conserved motifs.

Check residues and role of conserved motifs: If you can identify possible conserved motifs,
are the corresponding conserved template residues involved in binding or enzymatic function?

Check query and template alignments: A corrupted query or template alignment is the
main source of high-scoring false positives. The two most common sources of corruption in an
alignment are (1) non-homologous sequences, especially repetitive or low-complexity sequences in
the alignment, and (2) non-homologous fragments at the ends of the aligned database sequences.
Check the query and template MSAs in an alignment viewer such as Jalview or ALNEDIT.

Realign with other parameters: change the alignment parameters. Choose global instead
of local mode, for instance, if you expect your query to be globally homologous to the putative
homolog. Try to improve the probability by changing the values for minimum coverage or minimum
sequence identity. You can also run the query HMM against other databases.

Build the query and/or database MSAs more aggressively: If your query (or template)
MSA is not diverse enough, you could increase sensitivity substantially by trying to include more
remotely homologous sequences into the MSA. Try using our HHsenser web server at http:
//toolkit.tuebingen.mpg.de/hhsenser [26]. Check the HHsenser alignment manually using
an alignment editor. Have non-homologous sequences or sequence segments been accidentally in-
cluded? You can also try to build a more diverse MSA manually: Inspect the HHblits results
after the first iteration and consider including hits above the E-value inclusion threshold of 0.001,
based on biological plausibility, relatedness of the organism, a reasonable looking alignment, or
just guessing. Then start the second HHblits search iteration HHblits with this manually enriched
alignment.

Try out other tools: Try other tools (e.g. for profile-profil comparison) and servers for remote
homology detection and structure prediction. A list of servers can be found in [15] and [27].

Verify predictions experimentally: The ultimate confirmation of a homologous relationship
or structural model is, of course, the experimental verification of some of its key predictions, such
as validating the binding to certain ligands by binding assays, measuring biochemical activity, or
comparing the knock-out phenotype with the one obtained when the putative functional residues
are mutated.

4.6 What does the maximum accuracy alignment algorithm do?

HHblits and HHsearch use a better alignment algorithm than the quick and standard Viterbi
method to generate the final HMM-HMM alignments. Both realign all displayed alignments in a
second stage using the more accurate Maximum Accuracy (MAC) algorithm [1,28]. The Viterbi
algorithm is employed for searching and ranking the matches. The realignment step is parallelized
(-cpu <int>) and typically takes a few seconds only.

Please note: Using different alignment algorithms for scoring and aligning has the disadvantage

21

http://toolkit.tuebingen.mpg.de/hhsenser
http://toolkit.tuebingen.mpg.de/hhsenser

that the pairwise alignments that are displayed are not always very similar to those that are used
to calculate the scores. This can lead to confusing results where alignments of only one or a few
residues length may have obtained significant E-values. In such cases, run the search again with
the -norealign option, which will skip the MAC-realignment step. This will allow you to check if
the Viterbi alignments are valid at all, which they will probably not be. The length of the MAC
alignments can therefore give you additional information to decide if a match is valid. In order to
avoid confusion for users of our HHpred server [12,13], the -norealign option is the default there,
whereas for you pros who dare to use the command line package, realigning is done by default.

The posterior probability threshold is controlled with the -mact option. This parameter controls
the alignment algorithm’s greediness. More precisely, the MAC algorithm finds the alignment that
maximizes the sum of posterior probabilities minus mact for each aligned pair. Global alignments
are generated with -mact 0, whereas -mact 0.5 will produce quite conservative local alignments.

The -global and -local options now refer to both the Viterbi search stage as well as the MAC
realignment stage. With -global (-local), the posterior probability matrix will be calculated for
global (local) alignment. When -global is used in conjunction with -realign, the mact parameter is
automatically set to 0 in order to produce global alignments. In other words, both following two
commands will give global alignments:

$ hhsearch -i <query> -d <db> -realign -mact O
$ hhsearch -i <query> -d <db> -realign -global

The first version uses local Viterbi to search and then uses MAC to realign the proteins globally
(since mact is 0) on a local posterior probability matrix. The second version uses global Viterbi to
search and then realigns globally (since mact is automatically set to 0) on a global posterior matrix.
To detect and align remote homologs, for which sometimes only parts of the sequence are conserved,
the first version is clearly better. It is also more robust. If you expect to find globally alignable
sequence homologs, the second option might be preferable. In that case, it is recommended to run
both versions and compare the results.

4.7 How is the MSA diversity Neff calculated?

The number of effective sequences of the full alignment, which appears as NEFF in the header
of each hhm file, is the average of local values Neff_M(i) over all alignment positions i. The
values Neff_M(i) are given in the main model section of the hhm model files (subsection 6.2).
They quantify the local diversity of the alignment in a region around position i. More precisely,
Neff_M(i) measures the diversity of subalignment Alij/(7) that contains all sequences that have a
residue at column 4 of the full alignment. The subalignment contains all columns for which at least
90% of these sequences have no end gap. End gaps are gaps to the left of the first residue or to
the right of the last residue. The latter condition ensures that the sequences in the subalignment
Alips(i) cover most of the columns in it. The number of effective sequences in the subalignment
Alipg(i) is exp of the average sequence entropy over all columns of the subalignment. Hence,
Neff_M is bounded by 0 from below and 20 from above. In practice, it is bounded by the entropy
of a column with background amino acid distribution f,: Neg < fo;l o log fo = 16. Similarly,
Neff_I(i) gives the diversity of the subalignment Alif(i) of all sequences that have an insert at
position i, and Neff_D(i) refers to the diversity of subaligment Alip(7) of all sequences that have
a Delete (a gap) at position 4 of the full alignment.

22

4.8 On how to use HHsuite tools

Do HHsearch and HHblits work fine with multi-domain sequences? HHblits and HH-
search have been designed to work with multi-domain queries. However, the chances for false
positives entering the query alginment during the HHblits iterations is greater for multi-domain
proteins. For long sequences, it may therefore be of advantage to first search the PDB or the SCOP
domain database and then to cut the query sequence into smaller parts on the basis of the iden-
tified structural domains. Pfam or CDD are - in our opinion - less suitable to determine domain
boundaries.

How do I best build HMMs for integral membrane proteins? Despite the biased amino
acid composition in their integral membrane helices, membrane proteins behave very well in HMM-
HMM comparisons. In many benchmark tests and evolutionary studies we have not noticed any
higher rates of false positives than with cytosolic proteins.

How do I reconcile overlapping and conflicting domain predictions, for example when
domain A is predicted from residues 2-50 with 98% probability and domain B from 2-200 with
95% probability? The probability that a pair of residues is correctly aligned is the product of the
probability for the database match to be homologous (given by the values in the Probab column
of the hit list) times the posterior probability of the residue pair to be correctly aligned given
the database match is correct in the first place. The posterior probabilities are specified by the
confidence numbers in the last line of the alignment blocks (0 corresponds approximately to 0-10%,
9 to 90-100%). Therefore, an obvious solution would be to prune the alignments in the overlapping
region such that the sum of total probabilities is maximized. There is no script yet that does this
automatically.

How can I build a phylogenetic tree for HMMs? 1 would use a similarity measure like
the raw score per alignment length. You might also add the secondary structure score to the
raw score with some weight. Whereas probabilities, E-values, and P-values are useful for deciding
whether a match is a reliable homolog or not, they are not suitable for measuring similarities
because they strongly depend on the length of the alignment, roughly like P — value o< exp(A x
average_similarity x length), with some constant A of order 1. The probability has an even more
complex dependence on length. Also, the “Similarity” given above the alignment blocks is a
simple substitution matrix score per column between the query and template master sequences and
does not capture the evolutionary information contained in the MSAs (see subsection 5.2). One
note of caution: Large, diverse MSAs are usually more sensitive to find homologs than narrower
ones. Therefore, I would limit the diversity of all HMMs to some reasonable number (perhaps
around 5 or 7, depending on how far diverged your HMMs are). This filtering can be done using
$ hhfilter -i <MSA.a3m> -o <MSA_filt.a3m> -neff 5.

Can I weight some residues more than others during the HMM-HMM alignment? For
example to select templates for homology modeling, it could make sense to weight residues around
the known functional site more strongly. This might also positively impact the query-template
alignment itself. Well, directly weighting query or template match states is not possible. What
you can do with a bit of file fiddling, however, may even be better: You can modify the amount
of pseudocounts that hhblits, hhsearch, or hhalign will automatically add to the various match
state columns in the query or template profile HMM. This is equivalent to assuming a higher
conservation for these positions, since pseudocounts are basically mutations that are added to
the observed counts in the training sequences to generalize to more remotely related sequences. In
HHsuite, the more diverse the sequence neighborhood around a match state column ¢ is, as measured
by the number of effective sequences Neff_M(i) (see subsection 4.7), the fewer pseudocounts are
added. By manually increasing Neff_M(i) for a match state column you increase the assumed
conservation of this position in the protein. The Neff_M(i) values are found in the hhm-formatted

23

HMM model files in the eighth column of the second line of each match state block in units of
0.001 (see subsection 6.2). You could, for example, simply increase Neff_M(i) values by a factor
of two for important, conserved positions. Setting Neff_M(i) to 99999 will reduce pseudocounts to
effectively zero. A word of caution is advised: HMMSs built from a diverse set of training sequences
already contain quantitative information about the degree of conservation for each position.

Don’t I need to calibrate my query or database HMMs anymore? No. If you don’t
specify otherwise, the two parameters of the extreme-value distribution for the query are estimated
by a neural network from the lengths and diversities (Neg)) of query and database HMMs that was
trained on a large set of example queries-template pairs, in an approach similar to the one used
in [29]. However, the old calibration is still available as an option in HHsearch.

Should I use the -global option to build MSAs for an HHsuite database if I am intersted
in global alignments to these database HMMs? Never use -global when building MSAs by itera-
tive searches with HHblits. Remember that global alignments are very greedy alignments, where
alignments stretch to the ends of either query of database HMM, no matter what. Global align-
ments will therefore often lead to non-homologous segments getting included in the MSA, which is
catastrophic, as these false segments will lead to many false positive matches when searching with
this MSA. But you may use -global when searching (with a single iteration) for global matches
of your query HMMs through your customized HHsuite database, for example.

How many iterations of hhblits should I use to search my customized genome database?
One iteration! Doing more than one search iterations in general only makes sense in order to build
up a diverse MSA of homologous sequences by searching through the uniprot20 or nr20 databases.

4.9 About HHsuite databases

How can I retrieve database A3M or HHM files from my HHsuite database? For reasons
of efficiency, the MSA A3M and HHM model files are packed into two files, <db>_a3m.ffdata and
<db>_hhm.ffdata, each with its own index file. The contained files are easy to extract from the
packed files. For example, to dump dlaa7a_.a3m in scop70 to standard output, type

$ ffindex_get scop70_a3m.ffdata scop70_a3m.ffindex dlaa7a_.a3m

You may write the extracted file to a separate file by appending ’> dlaa7a_.a3m’ to the above
command. If you want to extract all files in the ffindex data structures to directory tmp/scop70,

type
$ ffindex_unpack scop70_a3m.ffdata scop70_a3m.ffindex tmp/scop70/ .

How can I build my own UniProt database for HHblits? The procedure to cluster the nr or
UniProt databases is more complicated than building a database for a genome or for the sequences
in the pdb. As its first step it involves clustering these huge databases down to 20%-30% sequence
identity. The clustering is done in our lab using a new method, kClust (Hauser M, Mayer CE, and
Soding J., to be published), available under GPL at ftp://ftp://toolkit.lmb.uni-muenchen.
de/kClust/. We will add all scripts to build these HHsuite databases to the HHsuite in due
time. These scripts generate A3M files, HHM files, and consensus sequences. Because of the large
number of files to generate, these scripts need to be run on a computer cluster and this would
require considerable computer savvyness.

Will you offer an HHsuite database that includes environmental sequences? We have
not seen significant improvements in remote homology detection through inclusion of environmental
sequences. A problem with these sequences is their low quality, in particular chimeric sequences

24

ftp://ftp://toolkit.lmb.uni-muenchen.de/kClust/
ftp://ftp://toolkit.lmb.uni-muenchen.de/kClust/

from wrong assemblies. This can lead to corrupted profiles in iterative searches. We therefore have
no immediate plans to provide a UniProt+env or nr+env for hhblits. If you think you really need
the env sequences, you have to use our old buildali.pl script or PSI-BLAST for the time being.
An alternative is to use kClust to cluster the database yourself. See the previous question.

How do I read the sequence/HMM headers in the pdb70 databases? The pdb70 database
is clustered to 70% maximum pairwise sequence identity to reduce redundancy. The PDB identi-
fiers at the end of the description line of sequence X lists the sequences with lower experimental
resolution that were removed for having higher than 70% sequence identity with PDB sequence X.
The asterisks indicate that a multi-atom ligand is bound in the structure.

4.10 About unexpected HHsuite behavior and troubleshooting

Why do I get different results when reversing the roles of query and template? When
taking A as the query, the pairwise alignment and significance scores with template B in the
database can be different than when B is the query and A the template. By default hhblits,
hhsearch, and hhalign add context-specific pseudocounts to the query MSA or HMM whereas
the much faster substitution matrix pseudocounts are added to the database HMMs/MSAs for
reasons of speed. If you want to combine the significance estimates from the forward and reverse
comparisons, we recommend to take the geometric mean of Probability, P-value and E-value. Since
the less diverse HMM or MSA will profit more from the context-specific pseudocounts than the
more diverse HMM or MSA, it might be even better to take the estimate from the comparison
in which the HMM/MSA with the smaller diversity (measured as number of effective sequences,
NEFF) is used as the query.

Why do I sometimes get the same database hit twice with different probabilities?
Each line in the summary hit list refers to an alignment with an HMM in the database, not to the
database HMM itself. Sometimes, alternative (suboptimal) alignments covering a different part
of either the query or the database HMM may appear in the hit list. Usually, both the optimal
and the alternative alignments are correct, in particular when the query or the database HMMs
represent repeat proteins.

Why do I get different results using hhblits and hhsearch when I search with the same
query through the same database? There are two reasons. First, some hits that hhsearch shows
might not have passed the prefilter in hhblits. The option -prepre_smax_thresh <bits> lets you
modify the minimum score threshold of the first, gapless alignment prefilter (default is 10 bits). Op-
tion -pre_evalue_thresh <E-value> sets the maximum E-value threshold for the second, gapped
alignment prefilter (default is 1000). Second, while the probabilities and P-values of hhblits and
hhsearch should be the identical for the same matches, the E-values are only similar. The reason
is that hhblits heuristically combines the E-values of the second prefilter with the E-values from
the full HMM-HMM Viterbi alignment into total E-values [8]. These E-values are slightly better in
distinguishing true from false hits, because they combine the partly independent information from
two comparisons.

Why do I get different results when I perform 2 and 1 + 1 iterations with HHblits?
When you do a single iteration and start a second iteration with the A3M output file from the
first iteration, the alignments should be nearly the same as if you do two iterations (-n 2) Why
not exactly the same? Because when doing multiple iterations in a single hhblits run, alignments
for each hit are only calculated once. When the same database HMM is found in later search
iterations, the “frozen”, first alignment is used instead of recomputing it. This increases robustness
with respect to homologous overextension. However, the significance values can be slightly different
between the cases with2 and 1+ 1 iterations. The reason is that the HHblits P-value is calculated
by a weighted combination of the P-value of the Viterbi pairwise HMM alignment and the prefilter

25

E-value. The prefilter E-values differ in the two cases described, since in the first case the E-value
is calculated for the first prefilter search (before the first full search) and in the second case it is
calculated for the second prefilter search, performed with the query MSA obtained after the first
search iteration.

Why do I get a segmentation fault when calling hhblits on our new machine? Often,
segmentation faults can be caused by too little available memory. HHblits needs memory to read the
entire column state file into memory for prefiltering (*.cs219). For Viterbi HMM-HMM alignment
it needs about

Memory Viterbi = Query_length x max_db_seq_length x (num_threads + 1) x 5B. (4)

Here, num_threads is the number of threads specified with option -cpu <int>. For realignment,
HHblits needs in addition

Memory Realing = Query_length x max_db_seq_length x (num_threads + 1) x 8B, (5)

but the amount of memory for realignment can be limited using the -maxmem <GB> option, which
will cause the realignment to skip the longest sequences. Under Linux, you can check your memory
limit settings using ulimit -a. Make sure you have at least 4GB per thread. Try

$ ulimit -m 4000000 -v 4000000 -s 8192 -f 4000000

Also try using -cpu 1 -maxmem 1 to reduce memory requirements. If it still does not work, follow
the tipps in subsection 4.1 to report your problems to us.

I obtain different results for the same query sequence on the HHpred web server and
on my local version using HHblits and HHsearch.

e Check the exact command line calls for HHblits and HHsearch from the log file accessible
on the results page of the server. If any of the commands differ, rerun your command line
version with the same options.

e Check if the query multiple sequence alignments on the server and in your versions contain
the same number of sequences and the same diversity. If not, try to find out why (see previous
point, for example.)

e For some of the alignments with differing scores, check if the db aligment on the server is
the same as the one in your local database. You can download the db MSA by clicking the
alignment logo above the query-template pairwise profile-profile alignment.

I find an alignment of my query and a template with the exact same sequence, but
they are aligned incorrectly. I find a gap inserted at residue position 92 in query and position
99 in template:

Q ss_pred CcEEEeeCCCC-CCCeEEEEEECCeeEEEEEEECCCCcEEEEEEeeCCHHHHHHHHhhCCCccceeEEEe
Q Pr_1 81 GAFLIRESESA-PGDFSLSVKFGNDVQHFKVLRDGAGKYFLWVVKFNSLNELVDYHRSTSVSRNQQIFLRI
Q Consensus 81 ~TrrrrmTme T grTTTTTmTTey h . grTTTTTT e

IR I R T i e o O B U T R R I T o S U
T Consensus 81 G"flvR s~ """ " 1-v™ """y ThT AT T T gt T T Tl Ly T Ty T 1~
T 1gri_A 81 GAFLIRESESAPGDFSLS-VKFGNDVQHFKVLRDGAGKYFLWVVKFNSLNELVDYHRSTSVSRNQQIFLRI
T ss_dssp TCEEEEECSSSTTCEEEE-EEETTEEEEEEEEECSSSCEESSSCEESSHHHHHHHHHHSCSSSSTTCCCCI
T ss_pred CeEEEEECCCCCCCcEEE-EECCCceeEEEEEECCCCcEEEeeEecCCHHHHHHHhhcCCCccccceecc

26

The seemingly incorrect alignment is explained by the fact that hhsearch / hhblits aligns profile
HMDMs, not sequences directly. In this example, the query and template multiple sequence align-
ments (MSAs) from which the profile HMMs were built are not identical, as one can see for instance
from the differing Consensus annotation strings and different predicted secondary structure strings.
The underying MSAs probably contain the exact same alignment ambiguity in this region, with
some member sequences being shifted by one positions between positions 92 and 99 relative to the
master sequence of the MSA.

5 HHsearch/HHblits output: hit list and pairwise alignments

5.1 Summary hit list

Let’s do a search with the human PIP49/FAM69B protein, for which we generated an MSA in
query.a3m with two iterations of HHblits in subsection 3.3:

Search results will be written to query.hhr

query.a3m is in A2M, A3M or FASTA format

Read query.a3m with 272 sequences

Alignment in query.a3m contains 431 match states

149 out of 270 sequences passed filter (up to 91% position-dependent max pairwise sequence identity)
Effective number of sequences exp(entropy) = 5.2
.. 1000 HMMs searched
.. 2000 HMMs searched
.. 3000 HMMs searched
.. 4000 HMMs searched
.. 5000 HMMs searched
.. 6000 HMMs searched
.. 7000 HMMs searched
.. 8000 HMMs searched
.. 9000 HMMs searched
.. 10000 HMMs searched
.. 11000 HMMs searched
.. 12000 HMMs searched
.. 13000 HMMs searched

Realigning 183 query-template alignments with maximum accuracy (MAC) algorithm ...

Query sp|Q5VUD6 |FA69B_HUMAN Protein FAM69B 0S=Homo sapiens GN=FAM69B PE=2 SV=3
Match_columns 431
No_of_segs 149 out of 272

Neff 5.2

Searched_HMMs 13730

Date Wed Jan 4 17:44:24 2012

Command hhsearch -i query.a3m -d /cluster/user/soeding/databases/scop -cpu 18

No Hit Prob E-value P-value Score SS Cols Query HMM Template HMM
1 digpca_ d.144.1.7 (A:) Lymphoc 99.7 4.5E-17 3.2E-21 154.3 10.2 99 203-320 56-157 (272)
2 dijpaa_ d.144.1.7 (A:) ephb2 r 99.7 4.3E-17 3.1E-21 156.8 8.8 99 203-321 75-177 (299)
3 dluwha_ d.144.1.7 (A:) B-Raf k 99.7 5.1E-17 3.7E-21 154.8 7.7 100 203-322 52-154 (276)
4 dlopja_ d.144.1.7 (A:) Abelson 99.7 6.2E-17 4.5E-21 154.8 8.3 100 203-321 61-164 (287)
5 dimp8a_ d.144.1.7 (A:) Focal a 99.6 9.9E-17 7.2E-21 151.3 8.6 100 203-322 56-158 (273)
6 dism2a_ d.144.1.7 (A:) Tyrosin 99.6 1.2E-16 8.8E-21 150.3 8.8 99 203-321 48-150 (263)
7 dlub9a_ d.144.1.7 (A:) Tyrosin 99.6 2.4E-16 1.7E-20 150.9 9.5 99 203-321 57-158 (285)
8 dilxbba_ d.144.1.7 (A:) Tyrosin 99.6 2.2E-16 1.6E-20 150.2 8.6 97 203-320 56-155 (277)
9 divjya_ d.144.1.7 (A:) Type I 99.6 2.6E-16 1.9E-20 151.3 8.8 98 204-320 46-156 (303)
10 dimgba_ d.144.1.7 (A:) epha2 r 99.6 4.4E-16 3.2E-20 148.0 8.7 193 203-422 57-272 (283)
64 d1j7la_ d.144.1.6 (A:) Type II 97.3 0.00014 1E-08 65.0 6.3 33 292-324 184-216 (263)
65 dind4a_ d.144.1.6 (A:) Aminogl 96.7 0.0012 8.5E-08 58.5 6.6 31 292-322 176-206 (255)
66 dinwla_ d.144.1.8 (A:) Choline 96.6 0.0011 7.8E-08 63.9 5.8 37 203-239 92-128 (395)
67 d2pulal d.144.1.6 (A:5-396) Me 95.6 0.0071 5.2E-07 58.3 6.4 32 290-322 222-253 (392)
68 dladpa_ a.39.1.2 (A:) Calcycli 91.7 0.12 8.9E-06 40.0 5.4 62 140-202 18-80 (92)
69 diksoa_ a.39.1.2 (A:) Calcycli 91.2 0.17 1.2E-05 39.5 5.8 56 147-203 28-83 (93)
70 dleBaa_ a.39.1.2 (A:) Calcycli 90.5 0.23 1.7E-05 38.3 6.0 56 147-203 27-82 (87)

27

175 dlgxpa2 a.39.1.8 (A:515-702) C 23.7 29 0.0021 28.8 3.8 49 137-197 69-118 (188)
176 dituza_ a.39.1.7 (A:) Diacylgl 23.5 55 0.004 25.3 5.3 55 143-201 44-106 (118)
177 dlggwa_ a.39.1.5 (A:) Cdc4p {F 23.1 26 0.0019 27.0 3.2 66 129-197 35-101 (140)
178 ditopa_ a.39.1.5 (A:) Troponin 22.8 72 0.0052 24.5 6.0 58 140-199 65-123 (162)
179 dlotfa_ d.80.1.1 (A:) 4-oxaloc 22.5 66 0.0048 21.5 5.0 40 267-306 12-53 (59)
180 dlogpa_ a.39.1.5 (A:) Caltract 22.2 32 0.0023 24.0 3.2 32 165-197 3-34 (77)
181 didfOal a.39.1.8 (A:515-700) C 21.7 43 0.0032 27.0 4.5 51 137-199 67-118 (186)
182 dizfsal a.39.1.2 (A:1-93) Calc 21.1 41 0.003 24.6 3.8 30 170-199 8-38 (93)
183 disnla_ a.39.1.7 (A:) Nucleobi 20.9 23 0.0016 26.2 2.2 24 174-197 18-41 (99)
Done

The summary hit list that is written to the screen shows the best hits from the database, ordered
by the probability of being a true positive (column 4: "Prob’). The meaning of the columns is the
following:

No: the index of the datbase match.
Hit: the first 30 characters of the name line.

Prob: the Probability of template to be a true positive. For the probability of being a true positive,
the secondary structure score in column S8 is taken into account, together with the raw score
in column Score. True positives are defined to be either globally homologous or they are at
least homologous in parts, and thereby locally similar in structure. More precisely, the latter
criterion demands that the MAXSUB score between query and hit is at least 0.1. In almost
all cases the structural similarity will we be due to a global OR LOCAL homology between
query and template.

E-value: The E-value gives the average number of false positives ("wrong hits’) with a score better
than the one for the template when scanning the database. It is a measure of reliability: E-
values near to 0 signify a very reliable hit, an E-value of 10 means about 10 wrong hits are
expected to be found in the database with a score at least this good. Note that E-value and
P-value are calculated without taking the secondary structure into account!

P-value: The P-value is the E-value divided by the number of sequences in the database. It is
the probability that in a pairwise comparison a wrong hit will score at least this good.

Score: the raw score is computed by the Viterbi HMM-HMM alignment excluding the secondary
structure score. It is the sum of similarities of the aligned profile columns minus the position-
specific gap penalties in bits. The column similarity score is the log-sum-of-odds score (base 2)
as described in the original HHsearch paper (Soding, Bioinformatics 2005). The gap penalties
are the log2 of the state transition probabilities, e.g. from match state to insert or delete to
match state.

SS: the secondary structure score. This score tells you how well the PSIPRED-predicted (3-state)
or actual DSSP-determined (8-state) secondary structure sequences agree with each other.
PSIPRED confidence values are used in the scoring, low confidences getting less statistical
weight.

Cols: the number of aligned Match columns in the HMM-HMM alignment.
Query HMM: the range of aligned match states from the query HMM.

Template HMM: the range of aligned match states from the database/template HMM and, in
parenthesis, the number of match states in the database HMM.

28

5.2 HMM-HMM pairwise alignments

The output file dlbpyal.hhr contains the same hit list plus the pairwise HMM alignments. One
example is give here:

No 68
>dladpa_ a.39.1.2 (A:) Calcyclin (S100) {Human (Homo sapiens), P11 s100a10, calpactin [TaxId: 9606]}
Probab=91.65 E-value=0.12 Score=40.00 Aligned_cols=62 Identities=16% Similarity=0.149 Sum_probs=42.0

Q ss_pred ccCCCCCCcHHHHHHHHHHHHHhh cccCccHHHHHHHHHhhhhccCCCCcCHHHHHHH-HHHHH

Q splQ5VUD6|FA69 140 FDKPTRGTSIKEFREMTLSFLKANLGDLPSLPALVGQVLLMADFNKDNRVSLAEAKSV-WALLQ 202 (431)

Q Consensus 140 "d"p~~g"s~"eF~emv~""i~""1lg~ "~ "17 LT d nk~g"vs~~e~"sl-wallqg 202 (431)
[I I B i I B B0 I (A S P

T Consensus 18 yd“ddG"is~“El~""1~Tr oo =TTty D™n"DG~IF EF~~1i~~1~"~ 80 (92)

T dladpa_ 18 FAGDKGYLTKEDLRVLMEKEFPGFLENQKD-PLAVDKIMKDLDQCRDGKVGFQSFFSLIAGLTI 80 (92)

T ss_dssp HHGGGCSBCHHHHHHHHHHHCHHHHHHSCC-TTHHHHHHHHHCTTSSSCBCHHHHHHHHHHHHH

T ss_pred HcCCCCEEcHHHHHHHHHHhccccccccCC-HHHHHHHHHHHhCCCCCCCcHHHHHHHHHHHHH

Confidence 444433449999999998876655554332 234566677899999999999997544 44443

This alignment shows an EF hand embedded in a kinase domain in PIP49/FAM69B. The first line,
which begins with with a “>”, contains the name and description line of the template/database
HMM. (We use “template HMM” and “matched database HMM” synonymously.) The next line
summarizes the main statistics for the alignment: The probability for the query and template
HMMs to be homologous (Probab), the E-value, the raw Score, and the number of aligned columns
are repeated from the summary hit list. The Identities give the percentage of aligned residue
pairs of the query and the template master sequences that are identical. The Similarity is the
arithmetic mean of the substitution scores between the aligned residue pairs from the query and
template master sequences. The substitution matrix is the same as the one used to calculate the
pseudocounts for the database HMMs, by default the Gonnet matrix. (The matrix can be changed
with the -Blosom<XX> option.)

The Sum_probs value is the sum over the posterior probabilities of all aligned pairs of match states.
These probabilities are calculated by the Forward-Backward algorithm. (They are used by the
maximum accuracy algorithm which computes the final alignments.) When the template HMM
has secondary structure annotation from DSSP, the sum_probs value runs only over aligned pairs
for which the template has a valid DSSP state, not a - sign. A - would indicate that the structural
coordinates of that residue are missing in the template. For homology modelling, this special
treatment of templates with known structure makes sum_probs a useful feature to use for ranking
templates.

The pairwise alignment consists of one or more blocks with the following lines:

Q ss_dssp: the query secondary structure as determined by DSSP (when available)
Q ss_pred: the query secondary structure as predicted by PSIPRED (when available)
Q <Q_name>: the query master sequence

Q Consensus: the query alignment consensus sequence

The predicted secondary structure states are shown in capital letters if the PSIPRED confidence
value is between 0.7 and 1.0, for lower confidence values they are given in lower-case letters. With
the option ’-ssconf’, ’ss_conf’ lines can be added to the alignments which report the PSIPRED
confidence values by numbers between 0 and 9 (as in versions up to 1.5).

The consensus sequence uses capital letters for well conserved columns and lower case for partially
conserved columns. Unconserved columns are marked by a tilde ~. Roughly speaking, amino acids
that occur with > 60% probability (before adding pseudocounts) are written as capital letters and
amino acids that have > 40% probability are written as lower case letters, where gaps are included

29

in the fraction counts. More precisely, when the gap-corrected amino acid fraction
pi(a) * Negr (i) /(Negr + 1)

is above 0.6 (0.4) an upper (lower) case letter is used for amino acid a. Here, p;(a) is the emission
probability for a in column i, N.g is the effective number of sequences in the entire multiple
alignment (between 1 and 20) and Neg(¢) is the effective number of sequences in the subalignment
consisting of those sequences that do not have a gap in column i. These percentages increase
approximately inversely proportionally with the fraction of gaps in the column, hence a column
with only cysteines and 50% gaps gets a lower case letter.

The line in the middle shows the column score between the query and template amino acid distri-
butions. It gives a valuable indication for the alignment quality.

= : column score below -1.5

- : column score between -1.5 and -0.5
: column score between -0.5 and +0.5

+ : column score between +0.5 and +1.5

| : column score above +1.5

A unit of column score corresponds approximately to 0.6 bits. From the column score line the
excellent alignment around the conserved ’D.n.DG.i...E’ motif in the turn between two helices
is evident. The alignment around the gap by contrast scores only a bit better than zero per residue
and is therefore not very reliable.

After the template block, which consists of the following lines,

T Consensus: the template alignment consensus sequence

T <T_name>: the template domain sequence

T ss_dssp: the template secondary structure as determined by DSSP (when available)
T ss_pred: the template secondary structure as predicted by PSIPRED (when available)

The last line in the block (Confidence) reports the reliability of the pairwise query-template
alignment. The confidence values are obtained from the posterior probabilities calculated in the
Forward-Backward algorithm. A value of 8 indicates a probability that this pair of HMM columns
is correctly aligned between 0.8 and 0.9. The Confidence line is only displayed when the -realign
option is active.

6 File formats

6.1 Multiple sequence alignment formats
Multiple alignments can be read in A2M, A3M, or aligned FASTA format. (Check the -M option
for using an input format different from the default A3M). You can transform MSAs from Clustal

or Stockholm format to A3M or aligned FASTA with the reformat.pl utility supplied in this
package.

To reformat from Clustal format to A3M:
$ reformat.pl test.aln test.a3m
or explicitly, if the formats can not be recognized from the extensions:

$ reformat.pl clu a3m test.clustal test.a3m

30

To reformat from Stockholm to aligned FASTA:

$ reformat.pl test.sto test.fas

Example for aligned FASTA format:

>dlaix__ b.63.1.1 (-) p13-MTCP1 {Human (Homo sapiens)}

PPDHLWVHQEGIYRDEYQRTWVAVVEE--E--T--SF LR ARVQQIQVPLG------- DAARPSHLLTS----- QL
>gi|6678257 |ref INP_033363.1|:(7-103) T-cell lymphoma breakpoint 1 [Mus musculus]
HPNRLWIWEKHVYLDEFRRSWLPVVIK--S--N--EK FQ VILRQEDVTLG------- EAMSPSQLVPY----- EL
>gi|7305557 |ref INP_038800.1]:(8-103) T-cell leukemia/lymphoma 1B, 3 [Mus musculus]
PPRFLVCTRDDIYEDENGRQWVVAKVE--T--S--RSpygsrietcIT--—-—------- VHLQHMTTIPQ------- EPTPQQPINNN----- SL
>gi|11415028|ref |[NP_068801.1]:(2-106) T-cell lymphoma-1; T-cell lymphoma-1A [Homo sapiens]
HPDRLWAWEKFVYLDEKQHAWLPLTIEikD--R--LQ LR VLLRREDVVLG------- RPMTPTQIGPS----- LL
>gi|7305561 | ref |NP_038804.1|:(7-103) T-cell leukemia/lymphoma 1B, 5 [Mus musculus]

—————————— GIYEDEHHRVWIAVNVE--T--S--HS---------SHgnrietcvt-VHLQHMTTLPQ-------EPTPQQPINNN-----SL
>gi|7305553|ref INP_038801.1]:(5-103) T-cell leukemia/lymphoma 1B, 1 [Mus musculus]
LPVYLVSVRLGIYEDEHHRVWIVANVE--TshS--SH GN RRRTHVTVHLW------- KLIPQQVIPFNplnydFL
>gi|27668591 | ref | XP_234504.1]:(7-103) similar to Chain A, Crystal Structure Of Murine Tcli
-PDRLWLWEKHVYLDEFRRSWLPIVIK--S--N--GK FQ VIMRQKDVILG------- DSMTPSQLVPY----- EL
>gi|27668589|ref | XP_234503.1]:(9-91) similar to T-cell leukemia/lymphoma 1B, 5;
-PHILTLRTHGIYEDEHHRLWVVLDLQ--A--Sh1SF SN RLLIYLTVYLQqgvafplESTPPSPMNLN----- GL
>gi|73056559|ref INP_038802.1]:(8-102) T-cell leukemia/lymphoma 1B, 4 [Mus musculus]
PPCFLVCTRDDIYEDEHGRQWVAAKVE--T--S--SH--------- SPycskietcvtVHLWQMTTLFQ------- EPSPDSLKTFN----- FL
>gi|7305555|ref INP_038803.1|:(9-102) T-cell leukemia/lymphoma 1B, 2 [Mus musculus]

————————— PGFYEDEHHRLWMVAKLE--T--C--SH---------SPycnkietcvtVHLWQMTRYPQ-------EPAPYNPMNYN-----FL

The sequence name and its description must be contained in a single name line beginning with the
> symbol and followed directly by the sequence name. The residue data is contained in one or more
lines of arbitrary length following the name line. No empty lines should be used. In aligned FASTA
the gaps are written with ’-” and the n’th letter of each sequence (except newlines) is understood
to build the n’th column of the multiple alignment.

The same alignment in A2M format looks like this:

>dlalx__ b.63.1.1 (-) p13-MTCP1 {Human (Homo sapiens)}

PPDHLWVHQEGIYRDEYQRTWVAVVEE. .E..T..SF......... LR.......... ARVQQIQVPLG....... DAARPSHLLTS..... QL
>gi|6678257 |ref INP_033363.1|:(7-103) T-cell lymphoma breakpoint 1 [Mus musculus]
HPNRLWIWEKHVYLDEFRRSWLPVVIK..S..N..EK......... FQu......... VILRQEDVTLG....... EAMSPSQLVPY..... EL
>gi|7305557 | ref INP_038800.1|:(8-103) T-cell leukemia/lymphoma 1B, 3 [Mus musculus]
PPRFLVCTRDDIYEDENGRQWVVAKVE. .T..S. .RSpygsrietcIT.......... VHLQHMTTIPQ....... EPTPQQPINNN..... SL
>gi|11415028|ref [NP_068801.1]:(2-106) T-cell lymphoma-1; T-cell lymphoma-1A [Homo sapiens]
HPDRLWAWEKFVYLDEKQHAWLPLTIEikD..R..LQ......... LR.......... VLLRREDVVLG....... RPMTPTQIGPS..... LL
>gi|7305561 | ref |INP_038804.1|:(7-103) T-cell leukemia/lymphoma 1B, 5 [Mus musculus]

—————————— GIYEDEHHRVWIAVNVE..T..S..HS.........SHgnrietcvt.VHLQHMTTLPQ.......EPTPQQPINNN.....SL
>gi|7305553|ref INP_038801.1|:(5-103) T-cell leukemia/lymphoma 1B, 1 [Mus musculus]
LPVYLVSVRLGIYEDEHHRVWIVANVE. .TshS..SH......... GN.......... RRRTHVTVHLW....... KLIPQQVIPFNplnydFL
>gi|27668591 | ref |XP_234504.1]:(7-103) similar to Chain A, Crystal Structure Of Murine Tcli
-PDRLWLWEKHVYLDEFRRSWLPIVIK..S..N..GK......... FQ.......... VIMRQKDVILG....... DSMTPSQLVPY..... EL
>gi|27668589 | ref |XP_234503.1]:(9-91) similar to T-cell leukemia/lymphoma 1B, 5;
-PHILTLRTHGIYEDEHHRLWVVLDLQ. .A..Sh1SF......... SN.......... RLLIYLTVYLQqgvafplESTPPSPMNLN..... GL
>gi|7305559 | ref |[NP_038802.1]:(8-102) T-cell leukemia/lymphoma 1B, 4 [Mus musculus]
PPCFLVCTRDDIYEDEHGRQWVAAKVE. .T..S..SH......... SPycskietcvtVHLWQMTTLFQ....... EPSPDSLKTFN. FL
>gi|7306555|ref INP_038803.1]:(9-102) T-cell leukemia/lymphoma 1B, 2 [Mus musculus]

————————— PGFYEDEHHRLWMVAKLE. .T..C..SH.........SPycnkietcvtVHLWQMTRYPQ.EPAPYNPMNYN.....FL

A2M format is derived from aligned FASTA format. It looks very similar, but it distinguishes
between match/delete columns and insert columns. This information is important to uniquely
specify how an alignment is transformed into an HMM. The match/delete columns use upper case
letters for residues and the -’ symbol for deletions (gaps). The insert columns use lower case letters
for the inserted residues. Gaps aligned to inserted residues are written as ’.” Lines beginning with
a hash # symbol will be treated as commentary lines in HHsearch/HHblits (see below).

31

The same alignment in A3M:

>dlalx__ b.63.1.1 (-) p13-MTCP1 {Human (Homo sapiens)}
PPDHLWVHQEGIYRDEYQRTWVAVVEEETSFLRARVQQIQVPLGDAARPSHLLTSQL
>gi|6678257 |ref INP_033363.1|:(7-103) T-cell lymphoma breakpoint 1 [Mus musculus]
HPNRLWIWEKHVYLDEFRRSWLPVVIKSNEKFQVILRQEDVTLGEAMSPSQLVPYEL
>gi|7305557 |ref |[NP_038800.1]:(8-103) T-cell leukemia/lymphoma 1B, 3 [Mus musculus]
PPRFLVCTRDDIYEDENGRQWVVAKVETSRSpygsrietcITVHLQHMTTIPQEPTPQQPINNNSL

>gil11415028|ref INP_068801.1]:(2-106) T-cell lymphoma-1; T-cell lymphoma-1A [Homo sapiens]
HPDRLWAWEKFVYLDEKQHAWLPLTIEikDRLQLRVLLRREDVVLGRPMTPTQIGPSLL
>gi|7305561 | ref |INP_038804.1|:(7-103) T-cell leukemia/lymphoma 1B, 5 [Mus musculus]
—————————— GIYEDEHHRVWIAVNVETSHSSHgnrietcvtVHLQHMTTLPQEPTPQQPINNNSL

>gi|73055653|ref INP_038801.1]:(5-103) T-cell leukemia/lymphoma 1B, 1 [Mus musculus]
LPVYLVSVRLGIYEDEHHRVWIVANVETshSSHGNRRRTHVTVHLWKLIPQQVIPFNplnydFL
>gi|27668591 | ref |XP_234504.1]:(7-103) similar to Chain A, Crystal Structure Of Murine Tcll
-PDRLWLWEKHVYLDEFRRSWLPIVIKSNGKFQVIMRQKDVILGDSMTPSQLVPYEL
>gi|27668589 | ref |XP_234503.1]:(9-91) similar to T-cell leukemia/lymphoma 1B, 5;
-PHILTLRTHGIYEDEHHRLWVVLDLQASh1SFSNRLLIYLTVYLQqgvafplESTPPSPMNLNGL

>gi|7305559|ref INP_038802.1]:(8-102) T-cell leukemia/lymphoma 1B, 4 [Mus musculus]
PPCFLVCTRDDIYEDEHGRQWVAAKVETSSHSPycskietcvt VHLWQMTTLFQEPSPDSLKTFNFL

>gi|7305555|ref INP_038803.1]:(9-102) T-cell leukemia/lymphoma 1B, 2 [Mus musculus]
--------- PGFYEDEHHRLWMVAKLETCSHSPycnkietcvt VHLWQMTRYPQEPAPYNPMNYNFL

The A3M format is a condensed version of A2M format. It is obtained by omitting all *.” symbols
from A2M format. Hence residues emitted by Match states of the HMM are in upper case, residues
emitted by Insert states are in lower case and deletions are written ’-’. A3M-formatted alignments
can be reformatted to other formats like FASTA or A2M with the reformat.pl utility:

reformat.pl test.a3m test.a2m

Lines beginning with a hash # symbol will be treated as commentary lines in HHsearch/HHblits
(see below). Please note that A3M, though very practical and space-efficient, is not a standard
format, and the name A3M is our personal invention.

Secondary structure information in A3M/A2M or FASTA MSAs for HHsearch/HHblits

The alignments read in by HHblits, HHsearch or HHmake can also contain secondary structure
information. This information can be included in sequences with special names, like in this A3M

file:

>ss_dssp

CCSEEEEEETTEEEETTSCEEEEEEEECSSCEEEEEECCCCCCCSCCCHHHHTTCSSCSEEEEETTTEEEETTSC

>aa_dssp

PPDHLWVHQEGIYRDEYQRTWVAVVEEETSFLRARVQQIQVPLGDAARPSHLLTSQLPLMWQLYPEERYMDNNSR

>aa_pred

PPDHLWVHQEGIYRDEYQRTWVAVVEEETSFLRARVQQIQVPLGDAARPSHLLTSQLPLMWQLYPEERYMDNNSR

>ss_pred

CCCEEEEECCCEECCCCCEEEEEEEEECCCCCCEEEEEEECCCCCCCCCCCCCCCCCCCEEEECCCCCEECCCCC

>ss_conf

987689961870104587078999970578640132153103788788777774424614787217702035631

>dlaix__ b.63.1.1 (-) p13-MTCP1 {Human (Homo sapiens)}
PPDHLWVHQEGIYRDEYQRTWVAVVEEETSFLRARVQQIQVPLGDAARPSHLLTSQLPLMWQLYPEERYMDNNSR
>gi|6678257 |ref INP_033363.1|:(7-103) T-cell lymphoma breakpoint 1 [Mus musculus]
HPNRLWIWEKHVYLDEFRRSWLPVVIKSNEKFQVILRQEDVTLGEAMSPSQLVPYELPLMWQLYPKDRYRSCDSM
>gi|7305557 |ref INP_038800.1]:(8-103) T-cell leukemia/lymphoma 1B, 3 [Mus musculus]
PPRFLVCTRDDIYEDENGRQWVVAKVETSRSpygsrietcITVHLQHMTTIPQEPTPQQPINNNSLPTMWRLESMNTYTGTDGT
>gi|11415028|ref |[NP_068801.1]:(2-106) T-cell lymphoma-1; T-cell lymphoma-1A [Homo sapiens]
HPDRLWAWEKFVYLDEKQHAWLPLTIEikDRLQLRVLLRREDVVLGRPMTPTQIGPSLLPIMWQLYPDGRYRSSDSS

The sequence with name >ss_dssp contains the 8-state DSSP-determined secondary structure.
>aa_dssp and >aa_pred contain the same residues as the query sequence (>dlalx__ in this case).

32

They are optional and used merely to check whether the secondary structure states have correctly
been assigned to the alignment. >ss_pred contains the 3-state secondary structure predicted by
PSIPRED, and >ss_conf contains the corresponding confidence values. The query sequence is the
first sequence that does not start with a special name. It is not marked explicitly.

Name lines in alignments

If you would like to create HMMSs from alignments with a specified name which differ from the
name of the first sequence, you can do so by adding name lines to your FASTA, A2M, or A3SM
alignment:

#PF02043 Bac_chlorC: Bacteriochlorophyll C binding protein

>ss_pred
CCCCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCCCCCCCCCCCCCCCCCCCCCCCCCCCCHHHHHHHCC
>ss_conf
9863234658887677777750019999999998878886403445886666775655576678777660667633039
>CSMA_CHLAU/1-79
ATRGWFSESSAQVAQIGDIMFQGHWQWVSNALQATAAAVDNINRNAYPGVSRSGSGEGAFSSSPSNGFRPKRIRSRFNR
>CSMA_CHLPH/2-51
NGGGVFTDILAASGRIFEVMVEGHWATVGYLFDSLGKGVSRINQNAYGNM

When creating an HMM from an A3M file with hhmake, the first word of the name line is used
as the name and file name of the HMM (PF02043 in this case). The following is an optional
description. The descriptions will appear in the hit list and alignment section of the search results.
The name lines can be arbitrarily long and there can be any number of name/description lines
included, marked by a '#’ as the first character in the line. Note that name lines are read by
HHmake but are not a part of the standard definition of the FASTA or A2M format.

6.2 HHsearch/HHblits model format (hhm-format)

HMMs can be read by HHsearch/HHblits in HHsuite’s own hhm format. Performance is severely re-
duced when using HMMER-format, because HMMER adds more pseudocounts than HHsearch /HHblits
that we cannot remove anymore. We therefore strongly advise against using models from HMMER
with HHsuite. We recommend to get the original MSA files and generate hhm-formatted models
using hhmake, as described in subsection 3.3.

If you absolutely need to use HMMER format, you can convert it to hhm format with hhmake:
$ hhmake -i test.hmm -o test.hhm

This works only for a single HMM per file, not for concatenated HMMs. You may add predicted
secondary structure to the hmm file with addss.pl as for hhm format.

HHsearch /HHblits uses a format HMM that is unchanged since HHsearch version 1.5. This is the
example of an HHM model file produced by HHmake:

HHsearch 1.5

NAME dimvfd_ b.129.1.1 (D:) MazE {Escherichia coli}

FAM b.129.1.1

FILE dimvfd_

coM hhmakel -i dimvfd_.a3m -o test.hhm

DATE Wed May 14 10:41:06 2011

LENG 44 match states, 44 columns in multiple alignment

FILT 32 out of 35 sequences passed filter (-id 90 -cov 0 -qid 0 -gsc -20.00 -diff 100)
NEFF 4.0

33

SEQ

>ss_dssp

CBCEEETTEEEEECCHHHHHHTTCCTTCBEEEEEETTEEEEEEC

>ss_pred

CCCCCCCCCCCCCCHHHHHHHHCCCCCCEEEEEEECCEEEEEEC

>ss_conf

93233467666600578899808998986889874993798739

>Consensus

sxIXKWGNSxAvR1Pax1lxxx1xlxxgdxixxxxxxxxiv1xPv

>dimvfd_ b.129.1.1 (D:) MazE {Escherichia colil}

SSVKRWGNSPAVRIPATLMQALNLNIDDEVKIDLVDGKLIIEPV

>gi|10176344|dbj |BAB07439.1|:(1-43) suppressor of ppGpp-regulated growth inhibitor [Bacillus halodurans]
TTIQKWGNSLAVRIPNHYAKHINVTQGSEIELSLgSDQTIILKP-

>gi|50120611|ref |YP_049778.1|:(3-43) suppressor of growth inhibitory protein ChpA [Erwinia carotovoral
-TVKKWGNSPAIRLSSSVMQAFDMTFNDSFDMEIRETEIALIP-

>gi|44064461|gb|EAG93225.1]: (2-42) unknown [environmental sequencel
-SVVKWGSYLAVRLPAELVLELGLKEGDEIDLVKDDGPVRVR--

>gi|31442758|gb|AAP55635.1]: (1-44) PemI-like protein [Pediococcus acidilacticil
TRLAKWGNSKAARIPSQIIKQLKLDDNQDMTITIENGSIVLTPI

>gi|44419085|gb|EAJ13619.1]:(3-43) unknown [environmental sequence]
SAIQKWGNSAAVRLPAVLLEQIDASVGSSLNADVRPDGVLLSP-

>gi|24376549|gb|AANS57947.1]:(3-44) putative cell growth regulatory protein [Streptococcus mutans UA159]
SAINKWGNSSAIRLPKQLVQELQLQTNDVLDYKVSGNKIILEKV

>gil11344928|gb|AAG34554.1]:(1-44) MazE [Photobacterium profundum]
TQIRKIGNSLGSIIPATFIRQLELAEGAEIDVKTVDGKIVIEPI

>gi|45681193|ref |ZP_00192636.1|: (2-44) C0G2336: Growth regulator [Mesorhizobium sp. BNC1]
-TIRKIGNSEGVILPKELLDRHNLKTGDALAIVEEGSDLVLKPV

#

NULL 3706 5728 4211 4064 4839 3729 4763 4308 4069 3323 5509 4640 4464 4937 4285 4423 3815 3783 6325 4665

HMM A C D E F G H I K L M N P Q R S T \ W Y
M->M M->I M->D I->M I->I D->M D->D Neff NeffI NeffD
0 * * 0 * 0 * * * *

S 1 * * * * * * * * * * * * * * * 1012 988 * * * 1
0 * * * * * * 2817 0 0

S 2 2307 * * * * * * * * * * 3178 3009 2179 1546 * * * 2

0 * * * * * * 3447

o
o

vV 3 * * * * * * * 917 3009 * * * * * * * 1530 * * 3
0 * * * * * * 3447 0 0

*

V 44 * * * * * * * 1309 * * * * * * * * * 745 * * 44
0 * * 0 * * * 2533

o
o

//

The first line (HHsearch 1.5) gives the format version, which corresponds to the HHsearch version
for which this format was first introduced. Newer versions of HHsearch/HHblits may use previous
format versions. The NAME line gives the name of the HMM and an optional description. The first
30 characters of this field are used in the summary hit list of the search results in hhr format,
the full name line is given above the query-template alignments of the search results. The FAM
line contains the family if the sequence is from SCOP of PFAM (used for calibration). COM is the
command that was used to generate the file. NEFF is the diversity of the alignment, calculated as
exp of the negative entropy averaged over all columns of the alignment.

The SEQ section contains a number of aligned, representative (pseudo) sequences in A3M format
and is terminated with a line containing only a #. The first sequence represents the DSSP secondary
structure (if available, i.e., if contained in the A3M or FASTA alignment from which the HMM
model was built), the second and third sequences contain the predicted secondary structure and
the corresponding confidence values in the range 0-9 (if available). The fourth sequence is the
consensus annotation sequence that is shown in the pairwise query-template alignments in the
hhsearch output. The first real sequence after the pseudo sequences is the seed or master sequence
from which the alignment was built (>dimvfd_, in our example). If the alignment does not represent
a single master sequence but an entire family, as in the case of PFAM alignments for example, the

34

first real sequence may be a consensus sequence calculated for the entire alignment. This master
sequence is shown in the pairwise query-template alignments in the hhsearch output.

The next line specifies the null model frequencies, which are extracted from the selected substitution
matrix used to add pseudocounts. Each of the positive integers is equal to 1000 times the negative
logarithm of the amino acid frequency (which is between 0 and 1):

— 1000 x log,(frequency) (6)

After the two annotation lines that specify the order of columns for the emission and transition
probabilities that follow, there is a line which is not currently read by HHsearch and that lists the
transition frequencies from the begin state to the first Match state, Insert state and Delete state.

The last block contains two lines for each column of the HMM. The first line starts with the amino
acid in the master sequence at that column in the HMM and the column number. Following are 20
positive integers representing the match state amino acid emission frequencies (see eq. 6). Asterisks
* stand for a frequency of 0 (which would otherwise be represented by 99999). Please note that,
unlike in HMMER format, the emission frequencies do not contain pseudo-counts in the HHsearch
model format. The second line contains the seven transition frequencies (eq. 6) coded as in eq.
6. The three local diversities, Neff _M, Neff_I, and Neff_D are given in units of 0.001 (see next
paragraph). The end of the model is indicated by a line containing only //.

7 Summary of command-line parameters

This is just a brief summary of command line parameters for the various binaries and perl scripts
as they are displayed by the programs when calling them without command line parameters. On
the help pages of the HHpred /HHblits web server http://toolkit.tuebingen.mpg.de you can
find more detailed explanations about some of the input parameters ('Parameters’ section) and
about how to interpret the output ('Results’ section). The FAQ section contains valuable practical
hints on topics such as how to validate marginally significant database matches or how to avoid
high-scoring false positives.

7.1 hhblits — HMM-HMM-based lighting-fast iterative sequence search

HHblits is a sensitive, general-purpose, iterative sequence search tool that represents both query
and database sequences by HMMs. You can search HHsuite databases starting with a single query
sequence, a multiple sequence alignment (MSA), or an HMM. HHblits prints out a ranked list
of database HMMs/MSAs and can also generate an MSA by merging the significant database
HMMs/MSAs onto the query MSA.

The binary hhblits_omp supports the parallelization over several queries with OpenMP. In this
case the input needs to be the basename of an ffindex with MSA’s. The outputs are treated as the
basenames for output ffindices.

Assume the ffindex database /home/user/databases/scop_a3m.ff{data,index}, the correspond-
ing basename is /home/user/databases/scop_a3m

Usage: hhblits -i query [options]
-i <file> input/query: single sequence or multiple sequence alignment (MSA)
in a3m, a2m, or FASTA format, or HMM in hhm format

<file> may be ’stdin’ or ’stdout’ throughout.

35

http://toolkit.tuebingen.mpg.de

Options:

-d <name> database name (e.g. uniprot20_29Feb2012)

Multiple databases may be specified with ’-d <dbl> -d <db2> ...’
-n [1,8] number of iterations (default=2)
-e [0,1] E-value cutoff for inclusion in result alignment (def=0.001)

Input alignment format:

-M a2m use A2M/A3M (default): upper case = Match; lower case = Insert;
> -2 = Delete; ’.’ = gaps aligned to inserts (may be omitted)

-M first use FASTA: columns with residue in 1st sequence are match states

-M [0,100] use FASTA: columns with fewer than XJ, gaps are match states

-tags/-notags do NOT / do neutralize His-, C-myc-, FLAG-tags, and trypsin
recognition sequence to background distribution (def=-notags)

Output optioms:

-o <file> write results in standard format to file (default=<infile.hhr>)
-oa3m <file> write result MSA with significant matches in a3m format

-opsi <file> write result MSA of significant matches in PSI-BLAST format
-ohhm <file> write HHM file for result MSA of significant matches

-oalis <name> write MSAs in A3M format after each iteration

-add_cons generate consensus sequence as master sequence of query MSA (default=don’t)
-hide_cons don’t show consensus sequence in alignments (default=show)

-hide_pred don’t show predicted 2ndary structure in alignments (default=show)
-hide_dssp don’t show DSSP 2ndary structure in alignments (default=show)

—-show_ssconf show confidences for predicted 2ndary structure in alignments
-0fas <file> write pairwise alignments in FASTA xor A2M (-0a2m) xor A3M (-0a3m) format

-seq <int> max. number of query/template sequences displayed (default=1)
-aliw <int> number of columns per line in alignment list (default=80)

-p [0,100] minimum probability in summary and alignment list (default=20)
-E [0,inf[maximum E-value in summary and alignment list (default=1E+06)
-Z <int> maximum number of lines in summary hit list (default=500)

-z <int> minimum number of lines in summary hit list (default=10)

-B <int> maximum number of alignments in alignment list (default=500)
-b <int> minimum number of alignments in alignment list (default=10)

Prefilter options

-noprefilt disable all filter steps

-noaddfilter disable all filter steps (except for fast prefiltering)

-maxfilt max number of hits allowed to pass 2nd prefilter (default=20000)
-min_prefilter_hits min number of hits to pass prefilter (default=100)

-prepre_smax_thresh min score threshold of ungapped prefilter (default=10)

-pre_evalue_thresh max E-value threshold of Smith-Waterman prefilter score (default=1000.0)
-pre_bitfactor prefilter scores are in units of 1 bit / pre_bitfactor (default=4)
-pre_gap_open gap open penalty in prefilter Smith-Waterman alignment (default=20)
-pre_gap_extend gap extend penalty in prefilter Smith-Waterman alignment (default=4)
-pre_score_offset offset on sequence profile scores in prefilter S-W alignment (default=50)

Filter options applied to query MSA, database MSAs, and result MSA
-all show all sequences in result MSA; do not filter result MSA
-id [0,100] maximum pairwise sequence identity (def=90)
-diff [0,inf[filter MSAs by selecting most diverse set of sequences, keeping
at least this many seqs in each MSA block of length 50
Zero and non-numerical values turn off the filtering. (def=1000)
-cov [0,100] minimum coverage with master sequence (%) (def=0)
-qid [0,100] minimum sequence identity with master sequence (%) (def=0)
-gsc [0,100] minimum score per column with master sequence (default=-20.0)
-neff [1,inf] target diversity of multiple sequence alignment (default=off)
-mark do not filter out sequences marked by ">@"in their name line

36

HMM-HMM alignment options:

-norealign do NOT realign displayed hits with MAC algorithm (def=realign)
-realign_old_hits realign hits from previous iterations
-mact [0,1[posterior prob threshold for MAC realignment controlling greedi-
ness at alignment ends: O:global >0.1:local (default=0.35)

-glob/-loc use global/local alignment mode for searching/ranking (def=local)
-realign realign displayed hits with max. accuracy (MAC) algorithm
-realign_max <int> realign max. <int> hits (default=500)
-ovlp <int> banded alignment: forbid <ovlp> largest diagonals |i-j| of DP matrix (def=0)
-alt <int> show up to this many alternative alignments with raw score > smin(def=4)
-smin <float> minimum raw score for alternative alignments (def=20.0)
-shift [-1,1] profile-profile score offset (def=-0.03)
-corr [0,1] weight of term for pair correlations (def=0.10)
-sc <int> amino acid score (tja: template HMM at column j) (def=1)

0 = log2 Sum(tjaxqia/pa) (pa: aa background frequencies)

1 = log2 Sum(tja*xqia/pqa) (pga = 1/2*(patta))

2 = log2 Sum(tjaxqia/ta) (ta: av. aa freqs in template)

3 = log2 Sum(tja*qia/qa) (gqa: av. aa freqs in query)

5 local amino acid composition correction

-ssm {0,..,4} 0: no ss scoring
1,2: ss scoring after or during alignment [default=2]
3,4: ss scoring after or during alignment, predicted vs. predicted

-ssw [0,1] weight of ss score (def=0.11)
-ssa [0,1] ss confusion matrix = (1-ssa)*I + ssa*psipred-confusion-matrix [def=1.00)
-Wg use global sequence weighting for realignment!

Gap cost options:
-gapb [0,inf[Transition pseudocount admixture (def=1.00)
-gapd [0,inf[Transition pseudocount admixture for open gap (default=0.15)
-gape [0,1.5] Transition pseudocount admixture for extend gap (def=1.00)
-gapf 10,inf] factor to increase/reduce gap open penalty for deletes (def=0.60)
-gapg 10,inf] factor to increase/reduce gap open penalty for inserts (def=0.60)
-gaph]0,inf] factor to increase/reduce gap extend penalty for deletes(def=0.60)
-gapi]0,inf] factor to increase/reduce gap extend penalty for inserts(def=0.60)
-egq [0,inf[penalty (bits) for end gaps aligned to query residues (def=0.00)
-egt [0,inf[penalty (bits) for end gaps aligned to template residues (def=0.00)

Pseudocount (pc) options:

Context specific hhm pseudocounts:

-pc_hhm_contxt_mode {0,..,3} position dependence of pc admixture ’tau’ (pc mode, default=2)
0: no pseudo counts: tau = 0
1: constant tau = a
2: diversity-dependent: tau = a/(1+((Neff[i]-1)/b)"c)
3: CSBlast admixture: tau = a(l+b)/(Neff[i]+Db)
(Neff[i]: number of effective seqs in local MSA around column i)

-pc_hhm_contxt_a [0,1] overall pseudocount admixture (def=0.9)
-pc_hhm_contxt_b [1,inf[Neff threshold value for mode 2 (def=4.0)
-pc_hhm_contxt_c [0,3] extinction exponent c for mode 2 (def=1.0)

Context independent hhm pseudocounts (used for templates; used for query if contxt file is not avail
-pc_hhm_nocontxt_mode {0,..,3} position dependence of pc admixture ’tau’ (pc mode, default=2)
0: no pseudo counts: tau = 0
1: constant tau = a
2: diversity-dependent: tau = a/(1+((Neff[i]-1)/b)"c)
(Neff[i]: number of effective seqs in local MSA around column i)
-pc_hhm_nocontxt_a [0,1] overall pseudocount admixture (def=1.0)
-pc_hhm_nocontxt_b [1,inf[Neff threshold value for mode 2 (def=1.5)

37

-pc_hhm_nocontxt_c [0,3] extinction exponent ¢ for mode 2 (def=1.0)

Context specific prefilter pseudocounts:
-pc_prefilter_contxt_mode {0,..,3} position dependence of pc admixture ’tau’ (pc mode, default=3)
0: no pseudo counts: tau = 0
1: constant tau = a
2: diversity-dependent: tau = a/(1+((Neff[i]-1)/b)"c)
3: CSBlast admixture: tau = a(l+b)/(Neff[i]+Db)
(Neff[i]: number of effective seqs in local MSA around column i)

-pc_prefilter_contxt_a [0,1] overall pseudocount admixture (def=0.8)
-pc_prefilter_contxt_b [1,inf[Neff threshold value for mode 2 (def=2.0)
-pc_prefilter_contxt_c [0,3] extinction exponent c¢ for mode 2 (def=1.0)

Context independent prefilter pseudocounts (used if context file is not available):

-pc_prefilter_nocontxt_mode {0,..,3} position dependence of pc admixture ’tau’ (pc mode, default=
0: no pseudo counts: tau = 0
1: constant tau = a

2: diversity-dependent: tau = a/(1+((Neff[i]l-1)/b)"c)
(Neff[i]: number of effective seqs in local MSA around column i)

-pc_prefilter_nocontxt_a [0,1] overall pseudocount admixture (def=1.0)
-pc_prefilter_nocontxt_b [1,inf[Neff threshold value for mode 2 (def=1.5)
-pc_prefilter_nocontxt_c [0,3] extinction exponent ¢ for mode 2 (def=1.0)

Context-specific pseudo-counts:

-nocontxt use substitution-matrix instead of context-specific pseudocounts

-contxt <file> context file for computing context-specific pseudocounts (default=${HHLIB}/data/cont
-csw [0,inf] weight of central position in cs pseudocount mode (def=1.6)

-csb [0,1] weight decay parameter for positions in cs pc mode (def=0.9)

Other options:

-v <int> verbose mode: 0:no screen output 1:only warings 2: verbose (def=2)

-neffmax]1,20] skip further search iterations when diversity Neff of query MSA
becomes larger than neffmax (default=10.0)

-cpu <int> number of CPUs to use (for shared memory SMPs) (default=2)

-scores <file> write scores for all pairwise comparisons to file

-atab <file> write all alignments in tabular layout to file

-maxres <int> max number of HMM columns (def=20001)

-maxmem [1,inf[limit memory for realignment (in GB) (def=3.0)

Example: hhblits -i query.fas -oa3m query.a3m -n 1

7.2 hhsearch — search a database of HMMs with a query MSA or HMM

Usage: hhsearch -i query -d database [options]
-i <file> input/query multiple sequence alignment (a2m, a3m, FASTA) or HMM

<file> may be ’stdin’ or ’stdout’ throughout.

Options:
-d <name> database name (e.g. uniprot20_29Feb2012)

Multiple databases may be specified with ’-d <dbl> -d <db2> ...’
-e [0,1] E-value cutoff for inclusion in result alignment (def=0.001)

Input alignment format:

-M a2m use A2M/A3M (default): upper case = Match; lower case = Insert;
’-? = Delete; ’.’ = gaps aligned to inserts (may be omitted)

-M first use FASTA: columns with residue in 1st sequence are match states

-M [0,100] use FASTA: columns with fewer than X gaps are match states

38

-tags/-notags do NOT / do neutralize His-, C-myc-, FLAG-tags, and trypsin
recognition sequence to background distribution (def=-notags)

Output optioms:

-o <file> write results in standard format to file (default=<infile.hhr>)
-oa3m <file> write result MSA with significant matches in a3m format

-opsi <file> write result MSA of significant matches in PSI-BLAST format
-ohhm <file> write HHM file for result MSA of significant matches

—add_cons generate consensus sequence as master sequence of query MSA (default=don’t)
-hide_cons don’t show consensus sequence in alignments (default=show)

-hide_pred don’t show predicted 2ndary structure in alignments (default=show)
-hide_dssp don’t show DSSP 2ndary structure in alignments (default=show)

-show_ssconf show confidences for predicted 2ndary structure in alignments
-0fas <file> write pairwise alignments in FASTA xor A2M (-0a2m) xor A3M (-0a3m) format

-seq <int> max. number of query/template sequences displayed (default=1)
-aliw <int> number of columns per line in alignment list (default=80)

-p [0,100] minimum probability in summary and alignment list (default=20)
-E [0,inf[maximum E-value in summary and alignment list (default=1E+06)
-Z <int> maximum number of lines in summary hit list (default=500)

-z <int> minimum number of lines in summary hit list (default=10)

-B <int> maximum number of alignments in alignment list (default=500)
-b <int> minimum number of alignments in alignment list (default=10)

Filter options applied to query MSA, database MSAs, and result MSA
-all show all sequences in result MSA; do not filter result MSA
-id [0,100] maximum pairwise sequence identity (def=90)
-diff [0,inf[filter MSAs by selecting most diverse set of sequences, keeping
at least this many seqs in each MSA block of length 50
Zero and non-numerical values turn off the filtering. (def=100)
-cov [0,100] minimum coverage with master sequence (%) (def=0)
-qid [0,100] minimum sequence identity with master sequence (%) (def=0)
-gsc [0,100] minimum score per column with master sequence (default=-20.0)
-neff [1,inf] target diversity of multiple sequence alignment (default=off)
-mark do not filter out sequences marked by ">@"in their name line

HMM-HMM alignment options:

-norealign do NOT realign displayed hits with MAC algorithm (def=realign)
-ovlp <int> banded alignment: forbid <ovlp> largest diagonals |i-j| of DP matrix (def=0)
-mact [0,1[posterior prob threshold for MAC realignment controlling greedi-
ness at alignment ends: 0O:global >0.1:local (default=0.35)
-glob/-loc use global/local alignment mode for searching/ranking (def=local)
-realign realign displayed hits with max. accuracy (MAC) algorithm
-excl <range> exclude query positions from the alignment, e.g. ’1-33,97-168’
-realign_max <int> realign max. <int> hits (default=500)
-alt <int> show up to this many alternative alignments with raw score > smin(def=4)
-smin <float> minimum raw score for alternative alignments (def=20.0)
-shift [-1,1] profile-profile score offset (def=-0.03)
-corr [0,1] weight of term for pair correlations (def=0.10)
-sc <int> amino acid score (tja: template HMM at column j) (def=1)
0 = log2 Sum(tja*qia/pa) (pa: aa background frequencies)

log2 Sum(tja*qia/pga) (pga = 1/2x(patta))
log2 Sum(tjax*qia/ta) (ta: av. aa freqs in template)
= log2 Sum(tja*qia/qa) (gqa: av. aa fregs in query)
local amino acid composition correction
-ssm {0,..,4} 0: no ss scoring
1,2: ss scoring after or during alignment [default=2]
3,4: ss scoring after or during alignment, predicted vs. predicted
-ssw [0,1] weight of ss score (def=0.11)

a w N -

39

-ssa [0,1]
—wg

Gap cost option
-gapb [0,inf[
-gapd [0,inf[
-gape [0,1.5]
-gapf]0,inf]
-gapg 10,inf]
-gaph 10, inf]
-gapi 10, inf]
-egq [0,inf[
-egt [0,inf[

Pseudocount (pc
Context specif
-pc_hhm_contx

-pc_hhm_contx
-pc_hhm_contx
-pc_hhm_contx

Context indepe
-pc_hhm_nocon

-pc_hhm_nocon
-pc_hhm_nocon
-pc_hhm_nocon

Context-specif
-nocontxt
—contxt <file
-csw [0,inf]
-csb [0,1]

Other options:
-v <int>

-cpu <int>
-scores <file>
-atab <file>
-maxres <int>
-maxmem [1,inf

Example: hhsear

SS substitution matrix = (l1-ssa)*I + ssa*full-SS-substition-matrix [def=1.00)
use global sequence weighting for realignment!

s:
Transition pseudocount admixture (def=1.00)

Transition pseudocount admixture for open gap (default=0.15)
Transition pseudocount admixture for extend gap (def=1.00)

factor to increase/reduce gap open penalty for deletes (def=0.60)
factor to increase/reduce gap open penalty for inserts (def=0.60)
factor to increase/reduce gap extend penalty for deletes(def=0.60)
factor to increase/reduce gap extend penalty for inserts(def=0.60)
penalty (bits) for end gaps aligned to query residues (def=0.00)
penalty (bits) for end gaps aligned to template residues (def=0.00)

) options:

ic hhm pseudocounts:

t_mode {0,..,3} position dependence of pc admixture ’tau’ (pc mode, default=2)
0: no pseudo counts: tau = 0

1: constant tau = a

2: diversity-dependent: tau = a/(1+((Neff[i]-1)/b)"c)

3: CSBlast admixture: tau = a(l+b)/(Neff[i]+Db)

(Neff[i]: number of effective seqs in local MSA around column i)
t_a [0,1] overall pseudocount admixture (def=0.9)

t_b [1,inf[Neff threshold value for mode 2 (def=4.0)

t_c [0,3] extinction exponent c for mode 2 (def=1.0)

ndent hhm pseudocounts (used for templates; used for query if contxt file is not avail
txt_mode {0,..,3} position dependence of pc admixture ’tau’ (pc mode, default=2)

0: no pseudo counts: tau = 0

1: constant tau = a

2: diversity-dependent: tau = a/(1+((Neff[i]-1)/b)"c)

(Neff[i]: number of effective seqs in local MSA around column i)

txt_a [0,1] overall pseudocount admixture (def=1.0)

txt_b [1,inf[Neff threshold value for mode 2 (def=1.5)

txt_c [0,3] extinction exponent ¢ for mode 2 (def=1.0)

ic pseudo-counts:
use substitution-matrix instead of context-specific pseudocounts

> context file for computing context-specific pseudocounts (default=${HHLIB}/data/cont
weight of central position in cs pseudocount mode (def=1.6)
weight decay parameter for positions in c¢s pc mode (def=0.9)

verbose mode: 0:no screen output 1:only warings 2: verbose (def=2)
number of CPUs to use (for shared memory SMPs) (default=2)

write scores for all pairwise comparisons to file

write all alignments in tabular layout to file

max number of HMM columns (def=20001)

[1imit memory for realignment (in GB) (def=3.0)

ch -i a.1.1.1.a3m -d scop70_1.71

7.3 hhfilter — filter an MSA

Filter an alignment by maximum pairwise sequence identity, minimum coverage, minimum sequence
identity, or score per column to the first (seed) sequence etc.

40

Usage: hhfilter -i infile -o outfile [options]

-1 <file> read input file in A3M/A2M or FASTA format

-o <file> write to output file in A3M format

-a <file> append to output file in A3M format

Options:

-v <int> verbose mode: 0:no screen output 1:only warings 2: verbose

-id [0,100] maximum pairwise sequence identity (%) (def=90)

-diff [0,inf[filter MSA by selecting most diverse set of sequences, keeping
at least this many seqs in each MSA block of length 50 (def=0)

-cov [0,100] minimum coverage with query (%) (def=0)

-qid [0,100] minimum sequence identity with query (%) (def=0)

-gsc [0,100] minimum score per column with query (def=-20.0)

-neff [1,inf] target diversity of alignment (default=off)

Input alignment format:

-M a2m use A2M/A3M (default): upper case = Match; lower case = Insert;
’-? = Delete; ’.’ = gaps aligned to inserts (may be omitted)

-M first use FASTA: columns with residue in 1st sequence are match states

-M [0,100] use FASTA: columns with fewer than X gaps are match states

Example: hhfilter -id 50 -i dimvfd_.a2m -o dimvfd_.fil.a2m

7.4 hhmake — build an HMM from an input alignment

Build a profile hidden Markov models from an input alignment, formatted in A2M, A3M, or FASTA,
or convert between HMMER format (.hmm) and HHsearch format (.hhm).

Usage: hhmake -i file [options]
-i <file> query alignment (A2M, A3M, or FASTA), or query HMM

Output options:

-o <file> HMM file to be written to (default=<infile.hhm>)

-a <file> HMM file to be appended to

-v <int> verbose mode: 0:no screen output 1:only warings 2: verbose

-seq <int> max. number of query/template sequences displayed (def=10)
Beware of overflows! All these sequences are stored in memory.

-cons make consensus sequence master sequence of query MSA

-name <name> use this name for HMM (default: use name of first sequence)

Filter query multiple sequence alignment

-id [0,100] maximum pairwise sequence identity (%) (def=90)

-diff [0,inf[filter MSA by selecting most diverse set of sequences, keeping

at least this many seqs in each MSA block of length 50 (def=100)

-cov [0,100] minimum coverage with query (%) (def=0)

-qid [0,100] minimum sequence identity with query (%) (def=0)

-gsc [0,100] minimum score per column with query (def=-20.0)

-neff [1,inf] target diversity of alignment (default=off)

Input alignment format:

-M a2m use A2M/A3M (default): upper case = Match; lower case = Insert;
’-7 = Delete; ’.’ = gaps aligned to inserts (may be omitted)

-M first use FASTA: columns with residue in 1st sequence are match states

-M [0,100] use FASTA: columns with fewer than X) gaps are match states

Pseudocount (pc) options:

41

Context specific hhm pseudocounts:
-pc_hhm_contxt_mode {0,..,3} position dependence of pc admixture ’tau’ (pc mode, default=0)
0: no pseudo counts: tau = 0
1: constant tau = a
2: diversity-dependent: tau = a/(1+((Neff[i]-1)/b)"c)
3: CSBlast admixture: tau = a(l+b)/(Neff[i]+Db)
(Neff[i]: number of effective seqs in local MSA around column i)
-pc_hhm_contxt_a [0,1] overall pseudocount admixture (def=0.9)
-pc_hhm_contxt_b [1,inf[Neff threshold value for mode 2 (def=4.0)
-pc_hhm_contxt_c [0,3] extinction exponent c for mode 2 (def=1.0)

Context independent hhm pseudocounts (used for templates; used for query if contxt file is not avail
-pc_hhm_nocontxt_mode {0,..,3} position dependence of pc admixture ’tau’ (pc mode, default=2)

0: no pseudo counts: tau = 0

1: constant tau = a

2: diversity-dependent: tau = a/(1+((Neff[i]-1)/b)"c)

(Neff[i]: number of effective seqs in local MSA around column i)

-pc_hhm_nocontxt_a [0,1] overall pseudocount admixture (def=1.0)
-pc_hhm_nocontxt_b [1,inf[Neff threshold value for mode 2 (def=1.5)
-pc_hhm_nocontxt_c [0,3] extinction exponent c for mode 2 (def=1.0)

Context-specific pseudo-counts:
-nocontxt use substitution-matrix instead of context-specific pseudocounts
-contxt <file> context file for computing context-specific pseudocounts (default=${HHLIB}/data/cont

Example: hhmake -i test.a3m

7.5 hhalign — align a query MSA/HMM to a template MSA /HMM

Align a query alignment/HMM to a template alignment/HMM by HMM-HMM alignment. If only
one alignment/HMM is given it is compared to itself and the best off-diagonal alignment plus all
further non-overlapping alignments above significance threshold are shown. The command also
allows to sample alignments randomly or to print out a list of indices of aligned residue pairs.

Usage: hhalign -i query -t template [options]

-i <file> input/query: single sequence or multiple sequence alignment (MSA)
in a3m, a2m, or FASTA format, or HMM in hhm format
-t <file> input/template: single sequence or multiple sequence alignment (MSA)

in a3m, a2m, or FASTA format, or HMM in hhm format

Input alignment format:

-M a2m use A2M/A3M (default): upper case = Match; lower case = Insert;
’-7 = Delete; ’.’ = gaps aligned to inserts (may be omitted)

-M first use FASTA: columns with residue in 1st sequence are match states

-M [0,100] use FASTA: columns with fewer than X), gaps are match states

-tags/-notags do NOT / do neutralize His-, C-myc-, FLAG-tags, and trypsin
recognition sequence to background distribution (def=-notags)

Output options:

-o <file> write results in standard format to file (default=<infile.hhr>)

-oa3m <file> write query alignment in a3m or PSI-BLAST format (-opsi) to file (default=none)

-aa3m <file> append query alignment in a3m (-aa3m) or PSI-BLAST format (-apsi)to file (default=no
-0fas <file> write pairwise alignments in FASTA xor A2M (-0a2m) xor A3M (-0a3m) format

-add_cons generate consensus sequence as master sequence of query MSA (default=don’t)
-hide_cons don’t show consensus sequence in alignments (default=show)
-hide_pred don’t show predicted 2ndary structure in alignments (default=show)

42

-hide_dssp don’t show DSSP 2ndary structure in alignments (default=show)
-show_ssconf show confidences for predicted 2ndary structure in alignments

Filter options applied to query MSA, template MSA, and result MSA
-id [0,100] maximum pairwise sequence identity (def=90)
-diff [0,inf[filter MSAs by selecting most diverse set of sequences, keeping
at least this many seqs in each MSA block of length 50
Zero and non-numerical values turn off the filtering. (def=100)
-cov [0,100] minimum coverage with master sequence (%) (def=0)
-qid [0,100] minimum sequence identity with master sequence (%) (def=0)
-gsc [0,100] minimum score per column with master sequence (default=-20.0)
-mark do not filter out sequences marked by ">@"in their name line

HMM-HMM alignment options:
-norealign do NOT realign displayed hits with MAC algorithm (def=realign)
-mact [0,1[posterior prob threshold for MAC realignment controlling greedi-
ness at alignment ends: O:global >0.1:local (default=0.35)
-glob/-loc use global/local alignment mode for searching/ranking (def=local)

Other options:
-v <int> verbose mode: 0:no screen output 1:only warings 2: verbose (def=2)

Example: hhalign -i T0187.a3m -t dlhz4a_.hhm -o result.hhr

7.6 reformat.pl — reformat one or many alignments
Read one or many multiple alignments in one format and write them in another format

Usage: reformat.pl [informat] [outformat] infile outfile [options]
or reformat.pl [informat] [outformat] ’fileglob’ .ext [options]

Available input formats:

fas: aligned fasta; lower and upper case equivalent, ’.’ and ’-’ equivalent

a2m: aligned fasta; inserts: lower case, matches: upper case, deletes: ’-’,
gaps aligned to inserts: ’.’

adm: like a2m, but gaps aligned to inserts MAY be omitted

sto: Stockholm format; sequences in several blocks with sequence name at
beginning of line (HMMER output)

psi: format as read by PSI-BLAST using the -B option (like sto with -M first -r)

clu: Clustal format; sequences in several blocks with sequence name at beginning
of line

Available output formats:

fas: aligned fasta; all gaps ’-’

a2m: aligned fasta; inserts: lower case, matches: upper case, deletes: ’-’,
gaps aligned to inserts: ’.°

a3m: like a2m, but gaps aligned to inserts are omitted

sto: Stockholm format; sequences in just one block, one line per sequence

psi: format as read by PSI-BLAST using the -B option

clu: Clustal format

If no input or output format is given the file extension is interpreted as format
specification (’aln’ as ’clu’)

Options:
-v int verbose mode (0:off, 1:omn)
-num add number prefix to sequence names: ’name’, ’l:name’ ’2:name’ etc
-noss remove secondary structure sequences (beginning with >ss_)
-sa do not remove solvent accessibility sequences (beginning with >sa_)

43

-M first make all columns with residue in first seuqence match columns
(default for output format a2m or a3m)

-M int make all columns with less than X% gaps match columns
(for output format a2m or a3m)
-r remove all lower case residues (insert states)
(AFTER -M option has been processed)
-r int remove all lower case columns with more than X/, gaps
-g ’ suppress all gaps
-g =’ write all gaps as ’-’
-uc write all residues in upper case (AFTER other options have been processed)
-1lc write all residues in lower case (AFTER other options have been processed)
-1 number of residues per line (for Clustal, FASTA, A2M, A3M formats)
(default=100)
-d maximum number of characers in nameline (default=1000)

Examples: reformat.pl lhjra.a3m lhjra.a2m
(same as reformat.pl a3m a2m lhjra.a3m lhjra.a2m)
reformat.pl test.a3m test.fas -num -r 90
reformat.pl fas sto ’*.fasta’ .stockholm

7.7 addss.pl — add predicted secondary structure to an MSA or HMM

Add PSIPRED secondary structure prediction (and DSSP annotation) to a multiple sequence
alignment (MSA) or HMMER (multi-)model file.

If the input file is an MSA, the predicted secondary structure and confidence values are added
as special annotation sequences with names >ss_pred, >ss_conf, and >ss_dssp to the top of
the output A3M alignment. If no output file is given, the output file will have the same name
as the input file, except for the extension being replaced by ’.a3m’. Allowed input formats are
A2M/FASTA (default), A3BM (-a3m), CLUSTAL (-clu), STOCKHOLM (-sto), HMMER (-hmm).
Note that in order to add PSIPRED and DSSP annotations corresponding paths have to be set in
HHPaths.pm. To add DSSP annotations addss.pl first checks a folder of precomputed dssp files
which can be obtained from here. If the dssp file for a particular structure is not available, addss.pl
tries to execute the DSSP binary mkdssp. Please keep in mind that only the current DSSP version
(2.2.1) supports structures in cif format, and that compiling the software may cause problems on
several systems. If you have troubles to compile DSSP you may try to delete all occurrences of
"static" in its Makefile.

If the input file contains HMMER, models, records SSPRD and SSCON containing predicted sec-
ondary structure and confidence values are added to each model. In this case the output file name
is obligatory and must be different from the input file name.

Usage: perl addss.pl <ali file> [<outfile>] [-fas|-a3m|-clul-sto]
or perl addss.pl <hmm file> <outfile> —hmm

7.8 hhmakemodel.pl and hhmakemodel.py — generate MSAs or coarse 3D models
from HHsearch results file

From the top hits in an hhsearch output file (hhr), you can

e generate a MSA (multiple sequence alignment) containing all representative template se-
quences from all selected alignments (options -fas, -a2m, -a3m, -pir)

e generate several concatenated pairwise alignments in AL format (option -al)

44

http://www.cmbi.ru.nl/dssp.html

e generate several concatenated coarse 3D models in PDB format (option -ts)
In PIR, PDB and AL format, the pdb files are required in order to read the pdb residue numbers

and ATOM records. The PIR formatted file can be used directly as input to the MODELLER [14]
homology modeling package.

Usage: hhmakemodel.pl [-i] file.hhr [options]

Options:

-i <file.hhr> results file from hhsearch with hit list and alignments

-fas <file.fas> write a FASTA-formatted multiple alignment to file.fas

-a2m <file.a2m> write an A2M-formatted multiple alignment to file.a2m

-a3m <file.a3m> write an A3M-formatted multiple alignment to file.a3m

-m <int> [<int> ...] pick hits with specified indices (default=’-m 1°)

-p <probability> minimum probability threshold

-e <E-value> maximum E-value threshold

-q <query_ali> use the full-length query sequence in the alignment
(not only the aligned part);
the query alignment file must be in HHM, FASTA, A2M,
or A3M format.

-N use query name from hhr filename (default: use same
name as in hhr file)

-first include only first Q or T sequence of each hit in MSA

-v verbose mode

Options when database matches in hhr file are PDB or SCOP sequences

-pir <file.pir> write a PIR-formatted multiple alignment to file.pir

-ts <file.pdb> write the PDB-formatted models based on *pairwisex
alignments into file.pdb

-al <file.al> write the AL-formatted *pairwise* alignments into file.al

-d <pdbdirs> directories containing the pdb files (for PDB, SCOP, or DALI
sequences)

-s <int> shift the residue indices up/down by an integer

-CASP formatting for CASP (for -ts, -al options)

(default: LIVEBENCH formatting)

Analogously, hhmakemodel .py generates a MSA containing all representative template sequences
from all selected alignments in PIR format. Note that in hhmakemodel .py you have to specify the
folder containing the *.cif files which make up the alignment. The script will modify the ATOM
section of those cif files according to the residue numbering in the alignment. Use these renumbered
cifs file together with the PIR alignment output in MODELLER [14].

usage: hhmakemodel.py [-h] [-v] [-m INT [INT ...]] [-e FLOAT] [-r FLOAT] [-c]
FILE DIR FILE DIR

Creates a MODELLER alignment (*.pir) from a HHSearch results file (*.hhr).

positional arguments:

FILE results file from HHsearch with hit list and alignment
DIR path to the folder containing cif files

FILE output file (PIR-formatted multiple alignment)

DIR path to the folder where modified cif files should be

written to

optional arguments:
-h, --help show this help message and exit

45

-v, —-verbose verbose mode
-m INT [INT ...] pick hits with specified indices (e.g. -m 2 5)

-e FLOAT maximum E-Value threshold (e.g. -e 0.001)

-r FLOAT residue ratio (filter alignments that have contribute at
least residues according to the specified ratio).

-c convert non-canonical residues (default = True)

7.9 hhsuitedb.pl — Build an HHsuite database

Builds HHsuite database from a3m formatted MSAs and/or from HMMs (-0). MSAs and HMMs

can also be added (-a) to or removed (-r) from an existing database.

Usage: hhsuitedb.py [options]

Options:
-h, --help show this help message and exit
--1a3m=<GLOB> Glob for a3m files
--1cs219=<GLOB> Glob for cs219 files
--ihhm=<GLOB> Glob for hhm files

-o FILE Output hhsuite database basename
--cpu=INT Number of threads that shall used
--force Try to fix problems with the database

7.10 multithread.pl — Run a command for many files in parallel using multiple
threads

Usage: multithread.pl ’<fileglob>’ ’<command>’ [-cpu <int>] [-v {0,1,2}]
<command> can include symbol

$file for the full filename, e.g. /tmp/hh/1clg_A.a3m,

$name the filename without extension, e.g. /tmp/hh/1clg_A, and

$base for the filename without extension and path, e.g. 1lclg_A.

-cpu <int> number of threads to launch (default = 8)
-v {0,1,2} verbose mode (default = 1)

Example: multithread.pl ’*.a3m’ ’hhmake -i $file 1>$name.log 2>>error.log’ -cpu 16

7.11 splitfasta.pl — Split multi-sequence FASTA file into single-sequence files
Write files into current directory and name each file by the first word after ">" in the name line.

Usage: splitfasta.pl infile [option]

Option:
—-fam : use family-based name (for SCOP/ASTRAL sequences
-name : use sequence name as file name (default)

-ext <ext> : extension for sequence files (default=seq)

46

7.12 renumberpdb.pl — Renumber indices in PDB file to match input sequence
indices

The program reads an input sequence in FASTA/A3M which must have a SCOP domain, PDB chain, or DALI
domain identifier (e.g. dilhz4a_, 1hz4_A, or 1hz4A_1). It reads the corresponding PDB file from the
given pdb directory and generates a new PDB file by aligning the input sequence to the sequence
extracted from the ATOM records of the corresponding pdb chain and renumbering the residues in
columns 23-26 according to the position in the input sequence.

(HETATM records for MSE (selenomethionine) will be interpreted as ATOM records for MET in the
alignment. MSE will be changed to MET in the output file.)

Usage: renumberpdb.pl [options] infile [outfile]
Example: renumberpdb.pl dlhz4a_.a3m /cluster/tmp/dlhz4a_.pdb

Options:
-o <file> output file (default: <infile_wo_extension>.pdb
-d <pdbdir> give directory of pdb files (default=)
-a [A|B] filter alternative location identifier (e.g. A or B)

7.13 cif2fasta.py — Create a fasta file from cif files
An example of the usage of cif2fasta.py is provided in Section 3.5.

Usage: cif2fasta.py -i cif_folder -o *.fasta -c num_cores -v

cif2fasta.py takes a folder that contains cif files as input and outputs their
sequences into fasta file.

Options:
-h, —-help show this help message and exit
-i DIR input cif folder.
-o FILE output fasta file.
-p FILE output PDB filter file (optional).
-s FILE SCOP annotation.
-c INT number of cores (default = 1).
-1 INT Remove chains with a length < X (default = 30).
-v INT Verbose Mode (quiet = 0, full verbosity = 2).

7.14 pdbfilter.py — Filter sequences from the PDB (requires MMSeqs)

An example of the usage of pdbfilter.py is provided in Section 3.5. Note that the annotations
file which is required to select the proper PDB is created by cif2fasta.py using the -p flag.

usage: pdbfilter.py [-h] [-i FILE] [-r FILE] [-v] FILE FILE FILE FILE
pdbfilter.py selects from sequence clusters (determined by MMSeqs) the
sequences which have the best resolution, R-free factor and/or completness and

writes them to a fasta file.

positional arguments:

FILE input fasta file (created by cif2fasta.py)
FILE sequence clusters (MMsegs)
FILE annotations file (created by cif2fasta using the -p

flag, contains information about resolution, R-free
and completness of sequences).

47

FILE output fasta file

optional arguments:
-h, --help show this help message and exit
-i FILE, --include FILE

include PDB chains

-r FILE, --remove FILE

-v,

exclude PDB chains
—--verbose verbose mode

8 Selected changes from previous versions

8.1 Up to 3.0.0 (March 2015)

8.2

Changed building pipeline from gnu make to cmake.

SSE-parallelized Viterbi

Maximum Accuracy alignment speed-ups

Removed prefilter/viterbi block-shading

Removed support for old HHM format (HHM format version 1.2 with 1.1)
Added support for multiple databases in hhblits

Database format changed to <basename>_{a3m,hmm,cs219}.ff{data, index}
HHsearch requires now complete HHsuite databases (same as HHblits)
Replaced pthreads with openMP

openMP parallelized prefilter

Added openMP parallelized hhblits_omp over several queries

Added support for compressed databases

Adjusted the meaning of -Oa3m/-oa3m in hhblits, hhsearch and hhalign
-ghhm no longer supported in hhblits

-tc no longer supported in hhalign

-index no longer supported in hhalign

hhalign is no longer able to print pngs of the alignments

Up to 2.1.0 (March 2013)

Introduced a new format for hhblits databases: the prefilter flat files *.cs219 containing the
column-state sequences for prefiltering are replaced by a pair of flindex files. This leads to a
speed up for reading the prefilter db by 4 seconds and improved scaling of hhblits with the
number of cores. For compatibility with older versions of HHsuite, the *.cs219 files will be
still be provided with new db versions.

48

8.3

8.4

Improved sensitivity and alignment accuracy through introduction of a new, discriminative
method to calculate pseudocounts, described in Angermuller C, Biegert A, and Soding J,
Bioinformatics 28: 3240-3247 (2012).

Increased speed of hhsearch about 8-fold and of HHblits about 1.5-fold by implementing the
HMM-HMM Viterbi alingment in SSE2 SIMD (single input multiple data) instructions

Added option -macins to hhblits, hhsearch and hhalign that controls the costs of internal gap
positions in the Maximum Accuracy Algorithm. 0: gap cost is half the mact value. 1: no gap
cost, leads to very gappy alignments.

Expanded hhsuite user guide (how to runn hhblits efficiently, how to modify or extend existing
databases, how to visually check multiple sequence alignments, troubleshooting)

Added options to hhsuitedb.pl for adding (-a) and removing (-r) files from HHsuite database.

Up to 2.0.16 (January 2013)

Renamed option -nodiff to -all. The name -nodiff is very misleading as the diff option is not
actually switched off on the query and db alignments.

All error messages are now written to stderr (not stdout) and are of the form Error in <program_name>: <

Added script splitfasta.pl to split multiple-sequence FASTA file in multiple single-sequence
FASTA files. These are needed to run hhblits in parallel using multithread.pl.

Implemented -maxmem option specifying maximum memory in GB. This changes the max-
imum length, up to which database sequences will be realigned using the memory-hungry
maximum accuracy algorithm. This change will lead to more accurate results for longer
HMMs (;5000 match states).

Up to 2.0.2 (January 2012)

The iterative HMM-HMM search method HHblits has been added and the entire package is
now called HHsuite. HHblits brings the power of HMM-HMM comparison to mainstream,
general-purpose sequence searching and sequence analysis.

Context-specific pseudocounts have been implemented HHsearch, improving its sensitivity
and quality of alignments.

The speed of HHsearch was further increased through the use of SSE3 instructions.
An option -atab for writing alignment as a table (with posteriors) to file was introduced

HHsearch is now able to read HMMERS profiles (but should not be used due to a loss of
sensitivity).

An optional local amino acid compositional bias correction was introduced(options -sc 5 and
-scwin <window_halfsize>). No improvements are seen on a standard SCOP single domain
benchmark. However, their probably will be an improvement for more realistic sequences
containing multiple domains, repeats, and regions of strong compositional bias.

The score shift parameter and mact parameter have been optimized together on the optimiza-
tion set of HHblits [8], which resulted in slight improvements of sensitivity and alignment
quality. New default values are shift -0.03 bits and -mact 0.30.

49

8.5

8.6

Use of .hhdefaults still works but is deprecated. Use an alias in your .bashrc or equivalent
file instead (See Installation).

We removed a bug in -neff <target_diversity> option that lead to the input MSA being
reduced to only the master sequence when the target diversity was higher than the diversity
of the input MSA.

We removed a bug in addss.pl that could lead to errors for FASTA-formatted MSAs.

1.6.0 (November 2010)

A new procedure for estimation of P- and E-values has been implemented that circumvents
the need to calibrate HMMs. Calibration can still be done if desired. By default, however,
HHsearch now estimates the lambda and mu parameters of the extreme value distribution
(EVD) for each pair of query and database HMMs from the lengths of both HMMs and the
diversities of their underlying alignments. Apart from saving the time for calibration, this
procedure is more reliable and noise-resistant. This change only applies to the default local
search mode. For global searches, nothing has changed. Note that E-values in global search
mode are unreliable and that sensitivity is reduced.

Old calibrations can still be used:

-calm 0 : use empirical query HMM calibration (old default)

-calm 1 : use empirical db HMM calibration

-calm 2 : use both query and db HMM calibration

-calm 3 : use neural network calibration (new default)

Previous versions of HHsearch sometimes showed non-homologous hits with high probabilities
by matching long stretches of secondary structure states, in particular long helices, in the
absence of any similarity in the amino acid profiles. Capping the SS score by a linear function
of the profile score now effectively suppresses these spurious high-scoring false positives.

The output format for the query-template alignments has slightly changed. A 'Confidence’
line at the bottom of each alignment block now reports the posterior probabilities for each
alignment column when the -realign option is active (which it is by default). These prob-
abilities are calculated in the Forward-Backward algorithm that is needed as input for the
Maximum ACcuracy alignment algorithm. Also, the lines ’ss_conf’ with the confidence values
for the secondary structure prediction are omitted by default. (They can be displayed with
option -showssconf’). To compensate, secondary structure predictions with confidence values
between 7 and 9 are given in capital letters, while for the predictions with values between 0
and 6 lower-case letters are used.

In the hhsearch output file in the header lines before each query-database alignment, the
substitution matrix score (without gap penalties) of the query with the database sequence
is now reported in bits per column. Also, the sum of probabilities for each pair of aligned
residues from the MAC algorithm is reported here (0 if no MAC alignment is performed).

HHsearch now performs realign with MAC-alignment only around Viterbi-hit.

1.5.0 (August 2007)

By default, HHsearch realigns all displayed alignments in a second stage using the more ac-
curate Maximum Accuracy (MAC) alignment algorithm (Durbin, Eddy, Krough, Mitchison:
Biological sequence analysis, page 95; HMM-HMM version: J. Séding, unpublished). As

50

before, the Viterbi algorithm is employed for searching and ranking the matches. The re-
alignment step is parallelized (-cpu <int>) and typically takes a few seconds only. You can
switch off the MAC realignment with the -norealign option. The posterior probability thresh-
old is controlled with the -mact option. This parameter controls the alignment algorithm’s
greediness. More precisely, the MAC algorithm finds the alignment that maximizes the sum
of posterior probabilities minus mact for each aligned pair. Global alignments are generated
with -mact 0, whereas -mact 0.5 will produce quite conservative local alignments. Default
value is -mact 0.35, which produces alignments of roughly the same length as the Viterbi
algorithm. The -global and -local (default) option now refer to both the Viterbi search stage
as well as the MAC realignment stage. With -global (-local), the posterior probability matrix
will be calculated for global (local) alignment. Note that -local -mact 0’ will produce global
alignments from a local posterior probability matrix (which is not at all unreasonable).

An amino acid compositional bias correction is now performed by default. This increases
the sensitivity by 25% at 0.01 errors per query and by 5% at 0.1 errors per query. By
recalibrating the Probabilities, the increased selectivity of this new version allows to give
higher probabilities for the same P-values. Also, the score offset could be increased from -0.1
bits to 0 as a consequence.

The algorithm that filters the set of the most diverse sequences (option -diff) has been im-
proved. Before, it determined the set of the N most diverse sequences. In the case of multi-
domain alignments, this could lead to severely underrepresented regions. E.g. when the first
domain is only covered by a few fairly similar sequences and the second by hundreds of very
diverse ones, most or all of the similar ones were removed. The ’-diff N’ option now filters
the most diverse set of sequences, keeping at least N sequences in each block of ;50 columns.
This generally leads to a total number of sequences that is larger than N. Speed is similar.
The default is ’-diff 100’ for hhmake and hhsearch. Speed is similar. Use -diff 0 to switch this
filter off.

The sensitivity for the -global alignment option has been significantly increased by a more
robust statistical treatment. The sensitivity in -global mode is now only 0-10% lower than
for the default -local option on a SCOP benchmark, i.e., when the query or the templates
represent single structural domains. The E-values are now more realistic, although still not
as reliable as for -local. The Probabilities were recalibrated.

A new binary hhalign has been added. It is similar to hhsearch, but performs only pair-
wise comparisons. It can produce tables of aligned residues, and it can sample alternative
alignments stochastically. It uses the MAC algorithm by default.

HHsearch and hhalign can generate query-template multiple alignments in FASTA, A2M, or
A3M format with the -ofas, -oa2m, -oa3m options

Returned error values were changed to comply with convention that 0 means no errors:

Finished successfully

Format error in input files

File access error

Out of memory

Syntax error on command line
Internal logic error (please report)
Internal numeric error (please report)
Other

N o ot W =

51

Is anyone still interested in Mac OSX/PPC or SunOS support?

9 License

The HHsuite software package is distributed under Gnu Public License, Version 3.

This means that the HHsuite is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program in
the file LICENSE. If not, see http://www.gnu.org/licenses/.

The hhsuite contains in file hhprefilter.C code adapted from Michael Farrar (http://sites.
google.com/site/farrarmichael/smith-waterman and [5]) His code is marked in the file hhpre-
filter.C. The copy right of his code is shown below:

Copyright 2006, by Michael Farrar. All rights reserved. The SWSSE2
program and documentation may not be sold or incorporated into a
commercial product, in whole or in part, without written consent of
Michael Farrar.

For further information regarding permission for use or reproduction,
please contact Michael Farrar at:

farrar.michael@gmail.com

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

10 Contributors and Contact

Johannes Sdding: main code base incl. perl scripts up to version 2.0, debugging, documentation

Markus Meier: uniprot-1it database and associated hhblits code, code refactoring, tests and bench-
marks

Martin Steinegger: Fast SIMD HMM-HMM Viterbi code and various speed-ups
Michael Remmert: early HHblits version

Andy Hauser: ffindex, speed/memory optimization

Christof Angermiiller: context-specific pseudocounts, speed optimizations
Armin Meier: HHblits column state alphabets, tests and benchmarks

Andreas Biegert: HHblits column state alphabet ¢s219, context-specific pseudocounts

52

http://www.gnu.org/licenses/
http://sites.google.com/site/farrarmichael/smith-waterman
http://sites.google.com/site/farrarmichael/smith-waterman

Contact:

Johannes Soding

Max-Planck-Institut fr biophysikalische Chemie
Computational Biology

Am Fassberg 11

37077 Gottingen
http://www.mpibpc.mpg.de/de/soeding
soeding@mpibpc.mpg.de

11

Acknowlegements

We thank the many users of HHsuite who sent bug reports or gave critical feedback that led to
improvements in the software. We are grateful to Lazlo Kajan, Stefan Moller and the Debian team
for making the HHsuite software available as a Debian package. J.S. thanks Andrei Lupas for his
invaluable support, encouragement, and feedback during the first five years of the work on HHsuite
in his department.

References

1]

2]

R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological sequence analysis: Probabilistic
models of proteins and nucleic acids. Cambridge Univ. Press, Cambridge, 2008.

A. Krogh, M. Brown, I. S. Mian, K. Sjélander, and D. Haussler. Hidden markov models in
computational biology. Applications to protein modeling. J. Mol. Biol., 235:1501-1531, 1994.

S. F. Altschul, T. L. Madden, A. A. Schiffer, J. Zhang, Zh. Zhang, W. Miller, and D. Lipman.
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Nucleic Acids Res., 25:3389-3402, 1997.

UniProt Consortium. The Universal Protein Resource (UniProt) in 2010. Nucleic Acids Res.,
38(Database issue):D142-148, 2010.

M. Farrar. Striped Smith-Waterman speeds database searches six times over other SIMD
implementations. Bioinformatics, 23:156-161, Jan 2007.

D. T. Jones. Protein secondary structure prediction based on position-specific scoring matrices.
J. Mol. Biol., 292:195-202, 1999.

D. Marks, L.J. Colwell, R. Sheridan, R.A. Hopf, A. Pagnani, R. Zecchina, and Sander C.
Protein 3D structure computed from evolutionary sequence variation. PLoS ONE, 24:807—
814, 2011.

M. Remmert, A. Biegert, A. Hauser, and S6ding, J. Hhblits: Lightning-fast iterative protein
sequence searching by hmm-hmm alignment. Nat. Methods, 9:173-175, 2011.

P .E. Bourne, K. J. Addess, W. F. Bluhm, L. Chen, N. Deshpande, Z. Feng, W. Fleri, R. Green,
J. C. Merino-Ott, W. Townsend-Merino, H. Weissig, J. Westbrook, and H. M. Berman. The
distribution and query systems of the RCSB protein data bank. Nucleic Acid Res., 32:D223—
225, 2004.

53

[10]

[11]

[12]

[13]

[17]

[18]

[19]

[20]

[21]

L. Lo Conte, B. Ailey, T. J. Hubbard, S. E. Brenner, A. G. Murzin, and C. Chothia. SCOP:
a structural classification of proteins database. Nucleic Acids Res., 28:257-259, 2000.

R. D. Finn, J. Mistry, J. Tate, P. Coggill, A. Heger, J.E. Pollington, O. L. Gavin, P. Gu-
nasekaran, G. Ceric, K. Forslund, L. Holm, E. L. Sonnhammer, S. R. Eddy, and Bateman A.
The Pfam protein families database. Nucleic Acids Res., 38:D211-222, 2010.

J. Séding, A. Biegert, and A. N. Lupas. The HHpred interactive server for protein homology
detection and structure prediction. Nucleic Acids Res., 33:W244-W248, 2005.

A. Hildebrand, M. Remmert, A. Biegert, and J. Sé6ding. Fast and accurate automatic structure
prediction with HHpred. Proteins, 77:128-132, 2009.

A. Sali and T. L. Blundell. Comparative protein modelling by satisfaction of spatial restraints.
J. Mol. Biol., 234:779-815, 1993.

V. Mariani, F. Kiefer, T. Schmidt, J. Haas, and T. Schwede. Assessment of template based
protein structure predictions in CASP9. Proteins, 79(Suppl 10)(1):3758, 2011.

D. Higgins, F. Sievers, A. Wilm, D. Dineen, T. Gibson, K. Karplus, W. Li, R. Lopez,
H. McWilliam, M. Remmert, J. Sding, and Thompson J. Fast, scalable generation of high

quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol., 7:539,
201]1.

M. W. Gonzalez and W. R. Pearson. Homologous over-extension: a challenge for iterative
similarity searches. Nucleic Acids Res., 38:2177-2189, Apr 2010.

A. E. Todd, C. A. Orengo, and J. M. Thornton. Evolution of function in protein superfamilies,
from a structural perspective. J. Mol. Biol., 307:1113—-1143, 2001.

K. Pawlowski, L. Jaroszewski, L. Rychlewski, and A. Godzik. Sensitive sequence comparison
as protein function predictor. Pac Symp Biocomput, pages 42-53, 2000.

L. Rychlewski, B. Zhang, and A. Godzik. Fold and function predictions for Mycoplasma
genitalium proteins. Fold Des, 3:229-238, 1998.

L.N. Kinch and N.V. Grishin. Evolution of protein structures and functions. Curr. Opin.
Struct. Biol., 12:400-408, 2002.

J. S6ding, M Remmert, and Biegert. HHrep: de mowvo protein repeat detection and the origin
of TIM barrels. Nucleic Acids Res., 34:-W137-W142, 2006.

V. Alva, M. Remmert, A. Biegert, A. N. Lupas, and J. S6ding. A galaxy of folds. Protein Sci,
19:124-130, Jan 2010.

C. Chothia and A. M. Lesk. The relation between the divergence of sequence and structure in
proteins. EMBO J., 5:823-826, 1986.

M. Remmert, A. Biegert, D. Linke, A. Lupas, and J. Séding. Evolution of outer membrane
beta-barrels from an ancestral beta beta hairpin. Mol. Biol. Evol., 27:1348-1358, 2010.

J. Séding, M Remmert, A Biegert, and A. N. Lupas. HHsenser: exhaustive transitive profile
search detection using HMM-HMM comparison. Nucleic Acids Res., 34:W374-W378, 2006.

J. N. Battey, J. Kopp, L. Bordoli, R. J. Read, N. D. Clarke, and T. Schwede. Automated
server predictions in CASP7. Proteins, 69:68-82, 2007.

54

[28] A. Biegert and J. S6ding. De novo identification of highly diverged protein repeats by proba-
bilistic consistency. Bioinformatics, 24:807-814, 2008.

[29] R. I. Sadreyev and N. V. Grishin. Accurate statistical model of comparison between multiple
sequence alignments. Nucleic Acids Res., 36:2240-2248, 2008.

Good luck with your work!

55

	Introduction
	Installation of the HHsuite and its databases
	Supported platforms and hardware requirements
	Installation from source code
	Package installation
	HHsuite databases
	Running HHblits efficiently on a computer cluster

	Brief tutorial to HHsuite tools
	Overview of programs
	Searching databases of HMMs using HHsearch and HHblits
	Generating a multiple sequence alignment using HHblits
	Visually checking an MSA for corrupted regions
	Building customized databases
	Modifying or extending existing databases

	Frequently asked questions
	How do I report a bug?
	What is HMM-HMM comparison and why is it so powerful?
	When can the HHsuite be useful for me?
	What does homology mean and why is it important?
	How can I verify if a database match is homologous?
	What does the maximum accuracy alignment algorithm do?
	How is the MSA diversity Neff calculated?
	On how to use HHsuite tools
	About HHsuite databases
	About unexpected HHsuite behavior and troubleshooting

	HHsearch/HHblits output: hit list and pairwise alignments
	Summary hit list
	HMM-HMM pairwise alignments

	File formats
	Multiple sequence alignment formats
	HHsearch/HHblits model format (hhm-format)

	Summary of command-line parameters
	hhblits – HMM-HMM-based lighting-fast iterative sequence search
	hhsearch – search a database of HMMs with a query MSA or HMM
	hhfilter – filter an MSA
	hhmake – build an HMM from an input alignment
	hhalign – align a query MSA/HMM to a template MSA/HMM
	reformat.pl – reformat one or many alignments
	addss.pl – add predicted secondary structure to an MSA or HMM
	hhmakemodel.pl and hhmakemodel.py – generate MSAs or coarse 3D models from HHsearch results file
	hhsuitedb.pl – Build an HHsuite database
	multithread.pl – Run a command for many files in parallel using multiple threads
	splitfasta.pl – Split multi-sequence FASTA file into single-sequence files
	renumberpdb.pl – Renumber indices in PDB file to match input sequence indices
	cif2fasta.py – Create a fasta file from cif files
	pdbfilter.py – Filter sequences from the PDB (requires MMSeqs)

	Selected changes from previous versions
	Up to 3.0.0 (March 2015)
	Up to 2.1.0 (March 2013)
	Up to 2.0.16 (January 2013)
	Up to 2.0.2 (January 2012)
	1.6.0 (November 2010)
	1.5.0 (August 2007)

	License
	Contributors and Contact
	Acknowlegements
	References

