# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Functions for building the input features for the AlphaFold model.""" import os from typing import Any, Mapping, MutableMapping, Optional, Sequence, Union from absl import logging from alphafold.common import residue_constants from alphafold.data import msa_identifiers from alphafold.data import parsers from alphafold.data import templates from alphafold.data.tools import hhblits from alphafold.data.tools import hhsearch from alphafold.data.tools import hmmsearch from alphafold.data.tools import jackhmmer import numpy as np import random # Internal import (7716). FeatureDict = MutableMapping[str, np.ndarray] TemplateSearcher = Union[hhsearch.HHSearch, hmmsearch.Hmmsearch] def make_sequence_features( sequence: str, description: str, num_res: int) -> FeatureDict: """Constructs a feature dict of sequence features.""" features = {} features['aatype'] = residue_constants.sequence_to_onehot( sequence=sequence, mapping=residue_constants.restype_order_with_x, map_unknown_to_x=True) features['between_segment_residues'] = np.zeros((num_res,), dtype=np.int32) features['domain_name'] = np.array([description.encode('utf-8')], dtype=np.object_) features['residue_index'] = np.array(range(num_res), dtype=np.int32) features['seq_length'] = np.array([num_res] * num_res, dtype=np.int32) features['sequence'] = np.array([sequence.encode('utf-8')], dtype=np.object_) return features def make_msa_features(msas: Sequence[parsers.Msa]) -> FeatureDict: """Constructs a feature dict of MSA features.""" if not msas: raise ValueError('At least one MSA must be provided.') int_msa = [] deletion_matrix = [] species_ids = [] seen_sequences = set() for msa_index, msa in enumerate(msas): if not msa: raise ValueError(f'MSA {msa_index} must contain at least one sequence.') for sequence_index, sequence in enumerate(msa.sequences): if sequence in seen_sequences: continue seen_sequences.add(sequence) int_msa.append( [residue_constants.HHBLITS_AA_TO_ID[res] for res in sequence]) deletion_matrix.append(msa.deletion_matrix[sequence_index]) identifiers = msa_identifiers.get_identifiers( msa.descriptions[sequence_index]) species_ids.append(identifiers.species_id.encode('utf-8')) num_res = len(msas[0].sequences[0]) num_alignments = len(int_msa) features = {} features['deletion_matrix_int'] = np.array(deletion_matrix, dtype=np.int32) features['msa'] = np.array(int_msa, dtype=np.int32) features['num_alignments'] = np.array( [num_alignments] * num_res, dtype=np.int32) features['msa_species_identifiers'] = np.array(species_ids, dtype=np.object_) return features def run_msa_tool(msa_runner, input_fasta_path: str, msa_out_path: str, msa_format: str, use_precomputed_msas: bool, max_sto_sequences: Optional[int] = None ) -> Mapping[str, Any]: """Runs an MSA tool, checking if output already exists first.""" if not use_precomputed_msas or not os.path.exists(msa_out_path): if msa_format == 'sto' and max_sto_sequences is not None: result = msa_runner.query(input_fasta_path, max_sto_sequences)[0] # pytype: disable=wrong-arg-count else: result = msa_runner.query(input_fasta_path)[0] with open(msa_out_path, 'w') as f: f.write(result[msa_format]) else: logging.warning('Reading MSA from file %s', msa_out_path) if msa_format == 'sto' and max_sto_sequences is not None: precomputed_msa = parsers.truncate_stockholm_msa( msa_out_path, max_sto_sequences) result = {'sto': precomputed_msa} else: with open(msa_out_path, 'r') as f: result = {msa_format: f.read()} return result class DataPipeline: """Runs the alignment tools and assembles the input features.""" def __init__(self, jackhmmer_binary_path: str, hhblits_binary_path: str, uniref90_database_path: str, mgnify_database_path: str, bfd_database_path: Optional[str], uniclust30_database_path: Optional[str], small_bfd_database_path: Optional[str], template_searcher: TemplateSearcher, template_featurizer: templates.TemplateHitFeaturizer, use_small_bfd: bool, mgnify_max_hits: int = 501, uniref_max_hits: int = 10000, input_msa: str = None, no_templates: bool = False, use_precomputed_msas: bool = False): """Initializes the data pipeline.""" self._use_small_bfd = use_small_bfd self.jackhmmer_uniref90_runner = jackhmmer.Jackhmmer( binary_path=jackhmmer_binary_path, database_path=uniref90_database_path) if use_small_bfd: self.jackhmmer_small_bfd_runner = jackhmmer.Jackhmmer( binary_path=jackhmmer_binary_path, database_path=small_bfd_database_path) else: self.hhblits_bfd_uniclust_runner = hhblits.HHBlits( binary_path=hhblits_binary_path, databases=[bfd_database_path, uniclust30_database_path]) self.jackhmmer_mgnify_runner = jackhmmer.Jackhmmer( binary_path=jackhmmer_binary_path, database_path=mgnify_database_path) self.template_searcher = template_searcher self.template_featurizer = template_featurizer self.mgnify_max_hits = mgnify_max_hits self.uniref_max_hits = uniref_max_hits self.input_msa=input_msa self.no_templates=no_templates self.use_precomputed_msas = use_precomputed_msas def process(self, input_fasta_path: str, msa_output_dir: str) -> FeatureDict: """Runs alignment tools on the input sequence and creates features.""" with open(input_fasta_path) as f: input_fasta_str = f.read() input_seqs, input_descs = parsers.parse_fasta(input_fasta_str) if len(input_seqs) != 1: raise ValueError( f'More than one input sequence found in {input_fasta_path}.') input_sequence = input_seqs[0] input_description = input_descs[0] num_res = len(input_sequence) uniref90_out_path = os.path.join(msa_output_dir, 'uniref90_hits.sto') #if os.path.exists(self.user_specified_msa): # # uniref90_out_path=self.user_specified_msa jackhmmer_uniref90_result = run_msa_tool( msa_runner=self.jackhmmer_uniref90_runner, input_fasta_path=input_fasta_path, msa_out_path=uniref90_out_path, msa_format='sto', use_precomputed_msas=self.use_precomputed_msas, max_sto_sequences=self.uniref_max_hits) mgnify_out_path = os.path.join(msa_output_dir, 'mgnify_hits.sto') jackhmmer_mgnify_result = run_msa_tool( msa_runner=self.jackhmmer_mgnify_runner, input_fasta_path=input_fasta_path, msa_out_path=mgnify_out_path, msa_format='sto', use_precomputed_msas=self.use_precomputed_msas, max_sto_sequences=self.mgnify_max_hits) msa_for_templates = jackhmmer_uniref90_result['sto'] msa_for_templates = parsers.deduplicate_stockholm_msa(msa_for_templates) msa_for_templates = parsers.remove_empty_columns_from_stockholm_msa( msa_for_templates) pdb_hits_out_path = os.path.join( msa_output_dir, f'pdb_hits.{self.template_searcher.output_format}') if os.path.exists(pdb_hits_out_path): logging.info(f'Reading {pdb_hits_out_path}') with open(pdb_hits_out_path, 'r') as f: pdb_templates_result=f.read() else: if self.template_searcher.input_format == 'sto': pdb_templates_result = self.template_searcher.query(msa_for_templates) elif self.template_searcher.input_format == 'a3m': uniref90_msa_as_a3m = parsers.convert_stockholm_to_a3m(msa_for_templates) pdb_templates_result = self.template_searcher.query(uniref90_msa_as_a3m) else: raise ValueError('Unrecognized template input format: ' f'{self.template_searcher.input_format}') with open(pdb_hits_out_path, 'w') as f: f.write(pdb_templates_result) uniref90_msa = parsers.parse_stockholm(jackhmmer_uniref90_result['sto']) mgnify_msa = parsers.parse_stockholm(jackhmmer_mgnify_result['sto']) pdb_template_hits = self.template_searcher.get_template_hits( output_string=pdb_templates_result, input_sequence=input_sequence) if self._use_small_bfd: bfd_out_path = os.path.join(msa_output_dir, 'small_bfd_hits.sto') jackhmmer_small_bfd_result = run_msa_tool( msa_runner=self.jackhmmer_small_bfd_runner, input_fasta_path=input_fasta_path, msa_out_path=bfd_out_path, msa_format='sto', use_precomputed_msas=self.use_precomputed_msas) bfd_msa = parsers.parse_stockholm(jackhmmer_small_bfd_result['sto']) else: bfd_out_path = os.path.join(msa_output_dir, 'bfd_uniclust_hits.a3m') hhblits_bfd_uniclust_result = run_msa_tool( msa_runner=self.hhblits_bfd_uniclust_runner, input_fasta_path=input_fasta_path, msa_out_path=bfd_out_path, msa_format='a3m', use_precomputed_msas=self.use_precomputed_msas) bfd_msa = parsers.parse_a3m(hhblits_bfd_uniclust_result['a3m']) # print(pdb_template_hits) if self.no_templates: logging.info('Using no template information at all') pdb_template_hits=[] templates_result = self.template_featurizer.get_templates( query_sequence=input_sequence, hits=pdb_template_hits) sequence_features = make_sequence_features( sequence=input_sequence, description=input_description, num_res=num_res) if self.input_msa: logging.info(f'Reading MSA from {self.input_msa}') if os.path.exists(self.input_msa): with open(self.input_msa) as f: user_msa=parsers.parse_stockholm(f.read()) msa_features=make_msa_features((user_msa,)) logging.info(f'{self.input_msa} MSA size: {len(user_msa)}') else: raise FileNotFoundError(f'--input_msa file {self.input_msa} not found') else: msa_features = make_msa_features((uniref90_msa, bfd_msa, mgnify_msa)) logging.info('Uniref90 MSA size: %d sequences.', len(uniref90_msa)) logging.info('BFD MSA size: %d sequences.', len(bfd_msa)) logging.info('MGnify MSA size: %d sequences.', len(mgnify_msa)) logging.info('Final (deduplicated) MSA size: %d sequences.', msa_features['num_alignments'][0]) logging.info('Total number of templates (NB: this can include bad ' 'templates and is later filtered to top 4): %d.', templates_result.features['template_domain_names'].shape[0]) for name in templates_result.features: print(f'TEMPLATE FEATURES: {name} {templates_result.features[name].shape}') # print(f"TEMPLATE {templates_result.features['template_domain_names']}") return {**sequence_features, **msa_features, **templates_result.features}